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1 Introduction and General Goals

This final technical report contains a summary of the activities supported under the Air
Force AFOSR PRET Grant F49620-96-1-0329 during the period 1 July 1996 through 31
December 2001. This project was concerned with an interdisciplinary research program to
develop and test new computational methods for optimization based design and sensitivity
analysis of aerospace systems. The program integrated scientific and computational tools
developed at AeroSoft, Beam Technologies, Boeing Defense and Space Group
with new sensitivity techniques and optimization algorithms developed at Virginia Tech
and Cornell. The focus of the program was fundamental research in sensitivity and adjoint
based methods for design, control, and optimization of complex aerospace systems governed
by partial differential equations. In addition, the program was structured to promote the
transition of this basic research to Air Force laboratories and to industry. The principal
investigator was Dr. John A. Burns. Hatcher Professor of Mathematics at Virginia Tech.

o Introduction to the Center and General
Research Goals

The Air Force Center for Optimal Design and Control. (CODAC) was established in May
1993 under an Air Force AFOSR URI Grant. CODAC is an interdisciplinary research
center with core academic participants at Virginia Tech. CODAC has made significant




progress in the areas of optimal design and control of systems governed by partial dif-
ferential equations. In addition, CODAC has an established record of interactions with
industry and Air Force laboratories. The current industrial partners include AeroSoft and
Boeing Defense and Space Group. This group is composed of a proven team of scientists
and engineers from small high-tech firms and major aerospace companies. In addition we
have interactions with North carolina State University and Cornell University. These uni-
versity groups furnishes valuable expertise in optimal design, control and optimization of a
variety of application areas. The research group at Virginia Tech has been at the forefront
of the development of sensitivity methods for optimal design, with applications to shape
optimization for fluid flow management, and provides expertise in computational methods
for optimization and for simulation of fluid dynamics. The industrial partners themselves
contribute an immense expertise in computational fluid dynamics, finite element modeling
and computational mechanics.

The effort supported under AFOSR PRET Grant F49620-96-1-0329 was built on a highly
integrated interdisciplinary research program with three primary goals:

e To develop and investigate new mathematical and computational methods for sensitiv-
ity analysis with applications to optimal design of those aerospace systems described
by nonlinear partial differential equations. These applications include (but are not
limited to) shape optimization and design for flow management, materials processing,
manufacturing, combustion and high speed flows. By working jointly with industrial
partners and applying the results to real-world Air Force problems we established a
direct and rapid track for transitioning new techniques and software to industry.

e The development of a mathematical foundation for the construction of new models
and the investigation of the relationships between these models, simulation meth-
ods, sensitivity analysis and optimization algorithms. The objective is to provide a
theoretical framework for the rigorous analysis of design algorithms that combine nu-
merical simulation codes, approximate sensitivity calculations and optimization codes.
In particular, it is important to determine under what conditions a given numerical
simulation scheme can be combined with a specific optimization method to produce
a convergent design algorithm.

o The development of a computational environment and high level software tools that
engineers can effectively use to design and optimize aerospace systems. The objective
is to initially provide a common software substrate to all university and industrial
partners in the center and then develop this toolbox into a computational environment
for design. The existence of this software tool will enable rapid dissemination of the
technology developed in this project and help facilitate interactions between university
researchers and industrial partners. The outcomes envisioned are new and practical
computational tools for use in a wide range of aerospace design problems. '

3 CODAC Organization and Facilities

Dr. John A. Burns is the Director of CODAC and is responsible for the day-to-day opera-
tions of the Center and for implementing and coordinating the research, laboratory/industry
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interactions, and educational programs. Dr. Eugene M. Clff is the Director for Engi-
neering. CODAC is located within the Interdisciplinary Center for Applied Mathematics
(ICAM) at Virginia Tech. Dr. Terry Herdman is the Director of ICAM. The Ezecutive
Advisory Committee consists of the Center Director, the Director for Engineering and the
Director ICAM. The Executive Committee is responsible for program planning and for
advising the Director on the allocation of resources and on ways to make CODAC more
effective as an Air Force resource. The research conducted at CODAC requires computa-
tional, as well as more traditional laboratory facilities. Although much of the initial large
scale computing was done on supercomputers at Air Force facilities, pre-processing and
post-processing was done locally. During the past few years we have acquired an Origin
2000 supercomputer which enables us to develop practical software tools here at ICAM.

PRET Center Administration and Research Team

Research under the PRET Grant was conducted at six institutions: Virginia Tech,
Cornell, AeroSoft, Beam Technologies, Boeing and Lockheed Martin. Frequent meetings
of the team, exchange of visits, sharing of software, exchange of graduate students and
postdocs, an annual industry-Air Force laboratory-university workshop and communication
of results were be coordinated by the AFOSR-sponsored PRET Center CODAC. Professor
John Burns, headed an advisory board which consisted of Walters (AeroSoft), Roetman
(Boeing) and Grossman (MADD/Virginia Tech). Dr. Grossman was the Director of the
Multidisciplinary Analysis and Design Center at Virginia Tech, has broad contact with the
industrial aerospace design community.

The PRET Center provides the structure for unique educational and scientific training
of students and post-doctoral researchers in an interdisciplinary team approach to scientific
and engineering research. CODAC provided unique opportunities for theoretical, compu-
tational, and experimental research. Through the interactions with Air Force laboratories
and industrial partners, students are exposed to real problems. The combined theoretical,
computational, and experimental approach provides a meaningful interdisciplinary research
experience.

ICAM Computing Facilities
ICAM houses a heterogeneous Unix system with file-sharing under a Network File
System (NFS) and has excellent computational facilities. This includes:

e a 32-processor SGI Origin 2000 supercomputer with over 20 GB of RAM for large
scale computing, '

e a 4-processor SGI Origin 200 server providing NFS and NIS services,
e thirteen Unix workstations [SGI (9), DEC Alpha (2), Sun (2)},

e a collection of Pentium-based PC’s (5) and Power-PC MacIntosh systems (4) with
network access to the Unix systems and the Internet,




e a local (OC3) ATM network for NFS services and a (100 BaseT) switched Ethernet
network for user services.

The research developed under this contract has wide applicability and promises con-
siderable payoff in aerospace design applications. Although we worked with a variety of
industrial groups, the interaction with AeroSoft Inc. was clear the most fruitful. This
interaction will be detailed in the sections below. ,

lead to In order to provide focus for the research and to expedite its transition to
industrial use we have developed research partnerships with the following groups:

Objectives

The research program had three primary objectives: (i) To develop and investigate new
mathematical and computational methods for sensitivity analysis with applications to op-
timal design and control of aerospace systems; (ii) To develop a mathematical foundation
for the construction of new models and to investigate the relationships between these mod-
els, simulation methods, sensitivity analysis and optimization algorithms; (iii) To develop a
computational environment and high level software tools that engineers can effectively use
to design and optimize aerospace systems. The goal was to provide a theoretical framework
for the rigorous analysis of design algorithms that combine numerical simulation codes,
approximate sensitivity calculations and optimization codes.

4 Accomplishments

Under the support of this grant we completed the development a suite of computational
tools for sensitivity analysis, design, control, and optimization of a wide variety of nonlinear
partial differential equations. We focused on the refinement of the hybrid continuous sensi-
tivity methods that now form the foundations for the AeroSoft product SENSE and Beam
Technologies’ CFETools. We made considerable progress on algorithms for coupling single
disciplinary sensitivity codes for application to multi-physics problems. This research has
already been applied to COIL Laser design. In addition, we have completed an analysis of
the role that sensitivities play in time marching numerical schemes and developed a new
fast algorithm for solving optimal control problems governed by partial differential equa-
tions that arise in fluid flows. This work was motivated by interactions with our Boeing
partners and the Air Vehicles Directorate of AFRL. Although this grant produced several
major breakthroughs in sensitivity computations and optimal design, we will focus only on
three major projects. These projects are summarized in the accomplishment section below.
In addition, during this period the PRET Center has:

e Produced more than 115 scientific papers, articles and books,
e Made more than 150 presentations at conferences and colloquium,

e Directed more than 20 graduate students and 7 postdocs,
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e Worked with more than 50 visitors, representing 10 different countries,
e Assisted in the development of AeroSoft's SENSE software package,

e Worked with several Air Force laboratories to transition the research into problems
ranging from wind tunnel design to combustion control.

Major Accomplishments

We give a brief description of some research accomplishments and provide an indication of
the significance and potential applications. details are given in the next section.

Accomplishment 1: Developed a Method for Estimating Stability Derivatives.

e New Findings: This extends work begun last year to the case of three-dimensional
and viscous flows. The sensitivity equation provides an efficient way to compute static-
stability derivatives which describe, in linear approximation, the way the aerodynamic
forces and moments depend on the orientation of the body to the free-stream flow.
This research is discussed in § 77.

e Significance and Potential Applications: While deducing some of these stability
derivatives using finite-differences of neighboring solutions is possible, such methods
may not be efficient. For example, in order to evaluate stability derivatives associ-
ated with asymmetric flight, nonlinear flow-solutions must be generated on an entire
configuration, even in the usual case wherein the vehicle has a symmetry plane. The
present approach allows one to compute derivatives, such as the weathercock stability
parameter (Cnz|g=0), based on a nonlinear flow solution computed on one-half of the
configuration.

Accomplishment 2: Discovered an Extreme Sensitivity in Nonlinear Boundary
Value Problems of the Type that Describe Fluid Flows.

e New Findings: For convection diffusion problems we show that, because of finite
precision arithmetic inherent in digital computers, convergent numerical algorithms
can produce false (purely numerical) solutions. It is shown that these false solutions
may be viewed as solutions of nearby problems with very high sensitivity to boundary
values. In addition, because of this high sensitivity, mesh refinement to “converge a
solution” only exacerbates the matter.

e Significance and Potential Applications: The above results show that “numerical
based proofs” of non-uniqueness of solutions to hydrodynamic equations (e.g. Euler
Equations) need further study. In particular, even convergent numerical schemes can
produce false (non-unique) numerical solutions that are not solutions of the underlying




boundary value problem. This is extremely important when such codes are used for
optimal design and control. This analysis also can be applied to the development of
new accelerated marching algorithms. Finally, the sensitivity and stability analysis
developed in this effort can be applied to more complex fluid flow phenomena. In
particular, it supports the work of Bamieh, Butler, Dahleh, Farrell and Trefethen that
suggest transition to turbulence in certain fluid flows are a result of flow sensitivity.

5 Technical Details

Here we present a few technical details concerning the accomplishments given above. These
results may be found in the papers listed at the end of the report.

5.1 Direct Calculation of Aerodynamic Force Derivatives: A Sensitivity-
Equation Approach

In this section we discuss the sensitivity-equation approach to computing stability deriva-
tives using a single non-linear solution to the underlying fluid equations. The sensitivity
equations are presented in integral form with the necessary boundary conditions. The
lift-curve slope is computed at several angles of attack for a laminar airfoil. Stability char-
acteristics are analyzed for the YB-49 flying wing. '

5.1.1 Introduction

Computational Fluid Dynamics (CFD) plays an increasingly important role in the analysis
and design of aerospace vehicles. From a flight mechanics view a primary purpose of CFD
analyses is timely and accurate prediction of the aero-propulsion forces and moments applied
to the vehicle. For control-system design we need to have some notion of how these forces
and moments vary with vehicle motion - that is, one needs to estimate certain stability
derivatives.

While deducing some of these stability derivatives using finite-differences of neighboring
solutions is possible, such methods may not be efficient. For example, in order to evaluate
stability derivatives associated with asymmetric flight, nonlinear flow-solutions must be
generated on an entire configuration, even in the usual case wherein the vehicle has a
symmetry plane. The present approach allows one to compute derivatives, such as the
weathercock stability parameter (Cn,|g=0), based on a nonlinear flow solution computed
on one-half of the configuration. In addition, certain derivatives (e.g. the damping-in-roll
parameter Cyp), require a flow solution that permits explicit motions of the body (in this
case roll-rate p). Such modeling may not be readily available in standard CFD codes.

In recent years the desire to use optimization-based design algorithms has spurred the
need for design sensitivities and for efficient ways to calculate them. At this point there are
three approaches to the calculation of design sensitivities:

1. finite difference of neighboring solutions




2. ‘differentiate’ the numerical code ( i.e., ADIFOR)
3. ‘differentiate’ the boundary-value problem

While there are subtleties, in the second approach formally one imagines applying the chain-
rule to each line of code to produce another code which will evaluate the derivatives. Here
we will focus on the third approach, often called the Sensitivity Equation Method (SEM).
A high-level view of the abstract SEM approach is that it produces a linear boundary-
value problem; the solution of this problem is a flow sensitivity and describes, in linear
approximation, the way the flow solution (dependent variables) depends on a (scalar) design
parameter. In applications one finds that the solution of the underlying nonlinear boundary-
value problem often relies on a linearization so that many of the required ingredients for
the SEM already exist within the basic CFD code.

A related approach applies the SEM to the discretized equations. This is also related
to the ADIFOR approach, in that both are applied to a discretized problem. In general a
discrete approximation of the linear SEM is not the same as applying sensitivity ideas to
the discrete equations. For one thing, the latter approach requires grid sensitivities which
need not arise in the abstract method. There are connections between these approaches,
including a notion of asymptotic consistency develped under the present research.

In this section we will develop and demonstrate the abstract SEM method for computing
stability derivatives. Thus, we must formulate the flow equations so that the desired flight
parameters, such as angle-of-attack and side-slip angle, are available explicitly. Thus, the
following discussion is devoted to the parameterization of the body geometry and to a careful
description of some underlying coordinate systems. Following this we will briefly describe
the flow-equations and the associated boundary conditions. The main contribution is the
derivation of sensitivity equations for this class of problems. We demonstrate the approach
with several examples.

5.1.2 Body Geometry

In CFD applications the problem geometry is commonly described in terms of a grid. Ab-
stractly, one imagines a map from a computational domain to the physical domain and the
grid provides a discrete version of this map. The body geometry is implicitly described
by imposing appropriate boundary conditions on specific planes or parts of planes in the
computational domain.

For our purposes we must describe how the body moves and/or deforms under specific
changes in the geometry. Since we are concerned with relative motions between the body
and the surrounding fluid, there are inevitably several reasonable choices for underlying
coordinates. Our approach is arguably natural from a flight mechanics point-of-view.

We assume the atmosphere is homogeneous and at rest 'and use the symbol V. to denote
the lineal velocity of a specified point on the vehicle. At this specified point we imagine two
coordinate systems with a common origin

e a local horizontal system Ozpypzx, and

e a body-fixed system Ozpyp2p.




The local horizontal system has the Ozpyy horizontal with z, vertical and down. Since
the atmosphere is homogeneous and at rest we can take V. =11, 0, 07, so that the
basic translational motion is in the z, direction. Because of this choice, the body-fixed
system Ozyyp2y is oriented to the horizontal system by the aerodynamic angles: o, the
angle-of-attack; and £, the sideslip angle.

The jig-shape of the vehicle is defined by a map m, : £ C R? — R3. Here 0 € T are
points in the computational plane that define the body boundary or a part of the body. In
applications, one does not deal with the map 7o but rather with the image points produced
- that is, the points of the physical domain that correspond to appropriate boundary points
in the computational domain. In applying the abstract SEM, we will need to compute
various partial derivatives so that we must describe explicitly the underlying maps.

We are concerned with changes in the flow field (and so, changes in the applied loads)
that are induced by deformations and motions of the body. For body deformations we admit
a deformation field 71 so that points on the surface of the deformed body are given by

7:‘s(o‘a ¢1) = 7?0(0') + ¢17?1(0'), (51)

where the scalar ¢; is the magnitude of the deformation. It is possible to admit a com-
bination of deformations 7,2, ..., but since we deal with these one at a time the single
deformation case is adequate. In design applications the field m; would describe a per-
turbation of interest, for example, geometric twist distribution in a wing. In aeroelastic
applications, the field would describe some elastic mode - the SEM then gives a direct
calculation of the associated aeroelastic stiffness parameter.

5.1.3 Integral Equations for Fluid Dynamics

The scope of this paper encompasses both inviscid and viscous flow fields. Solutions to the
fluid-dynamic equations provide coefficients for the sensitivity equations which are discussed
below. The three-dimensional flow of a calorically-perfect, viscous fluid is governed by
a system of non-linear, hyperbolic partial differential equations which can be written in
integral form as

%///de+7i(F(Q)-ﬁ) dA=ji(Fv(Q)-ﬁ) dA. (5.2)

The conservative variables are Q = Q(z,¥,2,t) = [, pu, pv, pw, peo]T and represent the
density, momentum and total energy per unit volume of the fluid. The surface integrals
represent the inviscid and viscous fluxes (F and Fy). Transport properties are computed
using Sutherland curve fits. The integral formulation is the fundamental starting place for
finite-volume discretizations.

This system of equations may be solved subject to béundary conditions which for an
inviscid flow involve scalar relationships such as

0 (5.3)
0, (5.4)
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where the velocity vector is depicted as vV = (u,v,w)T. For a viscous fluid, the no-slip
condition is simply V = 0.




While the model Eqn. (5.2) includes explicit time-dependence, we are interested only
in the steady-state solution, which is assumed to exist. For this purpose we introduce the
notation

Q(z,y.2) = lim Q(z,y,21).

5.1.4 Sensitivity Equations

The idea of a flow sensitivity is that of a linear approximation — loosely a partial derivative
of the flow with respect to a parameter of interest. Here we use the symbol 5 to denote
a generic parameter and to emphasize that the flow solution depends both on position in
space and on the parameter we write

Q(z,y,z;1).

The sensitivity we seek is then formally given by

= —. (5.5)

. Our objective is to derive a linear boundary-value problem for S(-;77). We do this formally,

by differentiating the elements of the nonlinear boundary-value problem for the flow Q(, n).
Here we are specifically interested in two parameters:

e a — the angle-of-attack, and

e (3 - the side-slip angle.

5.1.5 Finite-Volume Sensitivity

Our form of the governing equations in Eqn. (5.2) is valid in an inertial reference frame. In
particular, we choose a frame such that the Cartesian-coordinate axes agree with with the
instantaneous body axes (jig shape). The parameters of interest (a, ) then do not explicitly
appear in any of the flux functions. In this case we proceed by formally differentiating
Eqn. (5.2) with respect to n and then interchange orders of differentiation to find

%///SdV+£(F’(Q,S)-ﬁ) dA=£(Fﬁ,(Q,S) 2) d4, (5.6)

where Q represents the conservative variables available from the steady-flow solution and
S represents the unknown flow sensitivities. Note that the governing equations for S(;m)
is linear and that the flow solution (Q(:,7) ) enters through spatially varying coefficients.
We have previously demonstrated that in the Euler flow case, Eqn. (5.6) is equivalent to
computing the n-derivative of the differential form of the conservation law.

The inviscid flux vector in the sensitivity equations is written as

P (V- 4)+p(V'- #)
pu(V ) + pu! (V- 8) + pu(V - 1) + fiap!
= h=—S-a={ pu(V -A)+p/(V-0)+pu(V  -f)+7, ¢, (57)
pw(V - h) + pw'(V - &) + pw(V' - ) + fzp/
p'ho(V - &) + pho(V - ) + pho(V" - )
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where the density sensitivity is p/, the velocity sensitivity is V' = (@, v, w')T, and the

pressure sensitivity is p’. The stagnation enthalpy per unit mass is defined as hg = h+ (\7

V)/2 and the enthalpy is h = e + p/p. The internal energy for a calorically perfect gas is

e = 5/2 RT. The numerical flux is computed using a characteristic-based, upwind scheme.
The viscous flux vector may be written as

0
Thefz + Toyfly + Tz, Mz
F, = Tyee + Tyyfy + Ty . (5.8)
LMz + T;yr‘zy + 71,7,
"'(Vq), O+ Tilkukﬁa:i + Tiku;cﬁz(
Assuming a linear stress-strain relationship, the viscous shear can be written as 7; =
24 (Si; — 1/3ukk 6ij) where Si; represents the strain rate. The sensitivity of the shear-
stress tensor is derived by differentiation
! ' 1 7 ! 1 7/
Tij = 2u |8 — §(V . V)(Sij +2u Sij - g(v -V )(S@j , (59)
where the sensitivity strain rate is

g/ _1<3u§+6_’ug_').

=3 \as; * 7

The sensitivity of the conduction term is (§)' = —k' VT — k VT".

5.1.6 Boundary Condition Sensitivity

Since our parameters do not explicitly enter the flux terms in Eqn. (5.2), the resulting
sensitivity equation Eqn. (5.6) is homogeneous. All the action then is in the boundary
conditions and in their explicit dependence on the problem parameters.

In-Flow Condition
Our model is expressed in a coordinate system translating with the vehicle so that the
relative fluid velocity is given by the usual Gallilean transformation

\7 = vabs - Vc-

In the present case all of the fluid at the in-flow boundary is at rest, so that we have the

inflow conditions:
cos fcosa

V(@) = -Vl sin 3
cossine |,

The in-flow boundary condition for the a-sensitivity is accordingly

0
cos Bsin o
d s
o2 =1Vl 0 : (5.10)
o
0o —cos3cos o
0
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while for the 3-sensitivity we have:

0
P . sin B cos a
% = ||Vl —cosf . (5.11)
P sin Bsin o
0

No-Penetration Condition

Another of the important boundary conditions in Euler flows is the so-called no pene-
tration condition (5.3), now written as V -7 = 0 on the solid boundary. Using the notation
introduced above we can write this more precisely as

V(r(o,n);n) -ffo,n) =0 VYo €Ly (5.12)

Since (5.12) must hold for all 7 in some open region, §2,, we can formally differentiate with
respect to 7). Note that the flow velocity function is defined over the flow region, that is
V:0x Q — R3, where O C R® is the flow region. In computing the 7-derivative of (5.12)
one must be careful to account for the chain-rule terms. This leads to

ovor = oV - (0n
(53:_3_7? * 'a?) +9-(5) o
AY

The velocity sensitivity we seek is captured in the (—5}-) term so that we are led to define

S

ol Q@
d|<x

This is the sensitivity variable we are seeking and the boundary condition on S that arises
from the flow-tangency condition is

. avor . o (0a\ _
S‘”“‘[‘é?a_n'“v'(é'ﬁ)_o']' (5.13)

The right-side of the boundary condition Eqn. (5.13) can be interpreted as a transpiration
condition for the sensitivity. As noted above, the state of the fluid in terms of primitive flow
variables at a given point in space is given by five quantities q = [p u v w p]7 In equation
(5.13) we are describing the sensitivity of the velocity components. Thus, if we wish to use S
to denote the five-component state-sensitivity there is a 3 X 5 matrix projection introduced.
The left side of (5.13) can be written as:

MS A =... orequivalently S-(MT#h)=

The particular parameters of interest in the present case are the angle-of-attack a and the
side-slip angle 3.

Additional Solid Boundary Conditions
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Beyond the in-flow and flow-tangency conditions it is common to introduce additional
boundary-conditions at solid interfaces in Euler flows. In the present case we shall use three
additional (scalar) conditions. Each of these is written in a standard form as

Va[f(a(z;n))] - A(z,m) =0 Vzel (5.14)

where T denotes the boundary points. In our application we'propose to use the following
three scalar-valued functions for f.

1. fi(q) =q =p density
2. fo(q) = g5 =p pressure
3. f3() = (g% + g% + g4?)/2 kinetic energy

Note that the scalar-functions (f) are not explicitly functions of the design-parameter (7).
We exploit this to expand (5.14) as

(%) Vaq(m(a;m);m) -A(o,n) =0 Vo €Ly

Recall that points on the boundary are images of the map 7. The 7 derivative of this leads

to
(%‘5) VS -n=— (%g) [(sz Q)ﬂ-") i+ Vazgq- ﬁ"’] ) (5'15)

The first of the forcing-terms on the right generally involves the Hessian of the primitive
variables. However, for the present application with 7 = a or 8 we have that both m, and 7,
vanish, so that in our applications the b.c. (5.15) are homogeneous.

5.1.7 Applications

As a first numerical example of the SEM approach to estimating stability derivatives, we
consider the calculation of the lift-curve slope for a 2-D viscous, compressible flow around an
airfoil. A potential benefit for design engineers is the ability to determine the lift-curve slope
using a single non-linear flow solution. Specifically, we model the flow around a NLF(1)-
0416 airfoil developed at NASA Langley by Somers. The flow conditions (Mo = 0.5,
Re = 2 x 10%) are extracted from an AGARD set of test cases for validating CFD codes.
The pressure contours and streamlines at a = 0° are shown in Fig. 5.1 on a 185 x 97 x 2
“C” mesh.

To proceed in the analysis, we wish determine the sensitivity of the airfoil’s lift to the
angle of attack. The far-field boundary condition for the SEM is determined by writing the
free-stream velocity as a function of the magnitude and angle of attack. In the absence of
side-slip, we apply Eqn. (5.10) as our free-stream sensitivity vector with g = 0°.

Using this free-stream boundary condition, the solution to the sensitivity equations at
o = 0° is shown in the following figure. Sensitivity pressure contours and streamlines of
velocity-vector sensitivity are depicted. From the pressure sensitivity near the nose, we see
that an increase in the angle of attack will cause an increase in the lower-surface pressure
and a decrease in the upper-surface pressure. The streamlines show that the magnitude of
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Figure 5.1: Pressure contours and velocity vectors for the NLF(1)-0416 airfoil at zero angle
of attack.
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the velocity vector will decrease beneath the airfoil surface and increase along the upper
surface. Careful investigation at the trailing edge shows that the momentum of the boundary
layer is predicted to decrease. All these indications are consistent with an increase in the
angle of attack for attached flow. The pressure coefficient and sensitivity are given in

FigFig:NLF4,3.

Figure 5.2: Pressure sensitivity and streamlines

NLF(1)-0416 Pressure Distribution
M,=0.5, Re=2x10", a=0 deg.

1
-
o

Pressure Coefficient, C,

0.0 0.2 04 0.6 08 1.0
Chord (x/c) !

Figure 5.3: Pressure coefficient and sensitivity

To determine the accuracy of the sensitivity method (more fundamentally, the linearity
of the local flow condition), we extrapolate the baseline flow to @ = 4° using a Taylor-series
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expansion
8Q ®
Aa. (5.16)

—ob L =
The pressure and streamlines for the near-by approximation is given in Fig. 5.4. The pre-
dominant flow features are a rearward movement of the stagnation point at the nose and
decreased pressure along the upper surface. Notice that the streamlines do not indicate sep-
arated flow. The accuracy of the pressure coefficient on the airfoil surface can be evaluated
using Fig. 77.

Figure 5.4: Projected solution at a = 4°

Performing a sensitivity analysis at o = 4° produces the contour solution shown in
Fig. 5.6. The bubbles in the upper-surface pressure sensitivity indicate the beginning
and ending of a laminar separation bubble followed by aerodynamic stall. The sensitiv-
ity streamlines depict similar behavior to the zero-degree case beneath the airfoil. However,
the prediction for the flow above the airfoil is for further flow separation. This is seen by
the upward movement of the sensitivity streamlines. Assuming laminar flow over the entire
airfoil surface, the computational solution begins to separate at a = 5°, consistent with the
sensitivity calculation. .

The surface pressure coefficient and sensitivity at a = 4° is shown in Fig. 5.7. The
sensitivity profile is much different than the smooth variation from nose to tail shown at
a = 0°. The sensitivity further indicates the likelihood of separated flow at higher angles of
attack. The Taylor approximation at o = 8° shows a pressure plateau on the upper surface
which indicates the presence of a laminar separation bubble.

Our objective of determining the lift-curve slope from one flow calculation and one
sensitivity calculation can be achieved by differentiating the lift coefficient with respect to
the angle of attack. Writing the lift coefficient in terms of force coefficients in the r and y
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NLF(1)-0416 Pressure Distribution
M,=0.5, Re=2x10", a=4 deg.
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Figure 5.5: Surface pressure coefficient

direction, we have
C) = Cycos o — Cysin ¢,

so that the lift-curve slope is computed as

00 _ (3, ., 0C
da Bac o

sin a) — (Cysin a+ Cz cos a) (5.17)

The sensitivity of the two force coefficients is obtained by integrating the inviscid and viscous
fluxes on the airfoil surface. The lift-curve slope is shown in Fig. 5.8 using experiment,
computation and sensitivity calculations. The computational lift-curve slope shows more
lift at the same angle of attack when compared to experiment. The CFD predicts a higher
pressure on the lower surface, thus producing more lift. The sensitivity lift-curve slope is
given at o = 0° and 4°.

5.1.8 Flying-Wing Stability Analysis

As early as 1923, Jack Northrop began advocating the flying-wing concept as the next
revolution in aircraft design. In the late 1930’s the Northrop Corporation undertook the
development of a series of all-wing concepts; and in late 1941 received an order for two
propeller-driven flying wings in support of the long-range bombing requirements of the
U.S. Army Air Corps. These XB-35’s were plagued with ‘both maintenance and accident
difficulties. With the growth of the jet-age, the XB-35 airframe was updated with eight
Allison J35-A-5 turbo-jets under a contract issued in June, 1945. The new aircraft was
designated the YB-49 and a schematic of the flying-wing bomber is shown in Fig. 5.9.
Airframe parameters for the plane are given in Table 1.

The perceived advantages of the flying wing were increased aerodynamic efficiency from
reduced parasite drag, simpler construction methods from fewer structural complications,
and increased stealth from a smaller visual target. Unfortunately, the technology of the day
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Figure 5.6: Sensitivity of the pressure and velocity vectors to the angle of attack at o = 4°.
Assuming totally laminar flow, the airfoil begins to stall at o = 5°.

could not solve problems associated with the aircraft’s stability characteristics — namely,
difficulty holding a steady course and altitude, as well as poor damping in yaw. The fly-by-
wire concept alleviates some of these problems in the B-2 stealth bomber.

In this section, we will use the sensitivity-equation method to estimate some of the
stability characteristics of the YB-49 flying wing. To simplify grid generation, we have
neglected the bubble canopy, and four vertical-fins/wing-fences that are a part of the actual
YB-49. Our calculations sample the angle-of-attack range (a = 0°,4°,8°) and we compute
CLr., CM.. Cn; and Cj; derivatives. The free-stream conditions correspond approximately
to cruise speed (Mo = 0.5) at an altitude of 35,000 feet.

Pitch Stability ‘

Stability in pitch requires, of course, that in the neighborhood of an equilibrium point
the slope of the pitch moment with angle-of-attack be negative. This leads to the stipulation
that the center-of-gravity be suitably forward of the mean aerodynamic center — defined,
loosely, as the point about which the moment-slope is zero.

For an inviscid-low CFD model, the pitching moment is computed as an appropriate
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NLF(1)-0416 Pressure Distribution
M,=0.5, Re=2x10", Projection Near Stall
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Figure 5.7: Surface pressure coefficient at o = 4° and 8° along with the pressure sensitivity.

surface integral of the normal pressure. We write this as an iterated integral

b/2 $2+32
M(a) = Y, z,a)d dy. 5.18
@= [ M(y)pm o) d(*— )] v (5.18)

—b/2

The inner term is identified as a familiar section contour integral and represents the con-
tribution to the pitching moment at spanwise location y. One may plot this pitch-loading
against the spanwise location y as shown in Fig. 5.10.

In the present treatment the longitudinal stability parameter M is evaluated in the
same way with the pressure replaced by the pressure sensitivity pq. One may describe the
inner integral as the stability loading function; it describes the contribution to pitch stability
from various locations along the wing-span. Fig. 5.11 displays the stability loading for the-
YB-49 planform at a = 4° and o = 8°. While the result is not dramatic, one can clearly
see the decrement in the stability contribution from the outboard wing panels. This feature
was described qualitatively by J. Northrop in his 1947 Wilbur Wright Memorial Lecture.

Contours of the pressure sensitivity to the angle of attack are shown in Fig. 5.12 and
Fig. 5.13. The domain is composed of ten zones composed of approximately 620,000 grid
points. Both the Euler equations and the sensitivity equations are solved using a first-
order spatially accurate flux-vector splitting scheme. The residual for the Euler equations
are converged four orders of magnitude in approximately 2250 iterations. The sensitivity
equations exhibit some stiffness for these calculations that has not been experienced in
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Lift Curve for NLF(1)-0416
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Figure 5.8: Lift-curve slopes obtained from experiment, CFD flow solver and the sensitivity-
equation method.

Figure 5.9: Three-view schematic of the YB-49 flying wing.

past SEM calculations. The theoretical reasons for this have not been investigated. In
general, the sensitivity equations, being linear, can be solved using an infinite time step. A
smaller time step is used for the 7 = , ( cases for two reasons: the fore-mentioned stiffness
and also because the problem is three-dimensional which requires a compromise between
convergence and memory. A hybrid Euler implicit/relaxation scheme is used to sweep
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Wing span (b) 524 m

Wing area () 371.6 m?

Aspect ratio (A) | 7.4

Taper ratio (A\) | 0.25

Chord 11.4 m (Root)

2.8 m (Tip)

Airfoil section NACA 653 — 018 (Root)
NACA 653 — 019 (Tip)

Incidence 0° (Root)

—4° (Tip)
Dihedral 0°53'
Sweep 26°57'48” (LE)

10°15'22” (TE)
M.A.C. 8 m (7.33 m aft of nose)
C.G. 7.13 m aft of the nose (est.)
Ceiling 45,700 feet

Cruising speed 429 mph at 35,000 feet

Table 1: Airframe data for the YB-49 configuration.

through the domain. Updates to the sensitivity vector are computed on two-dimensional
“planes” (in computational space) using Jacobi inner iterations with non-linear residual
updates computed in the third direction. Therefore, a complete linearization of the SEM
residual requires storage of the entire linearization matrix for all computational planes and
all zones which is impractical with limited memory. The compromise made for saving
memory is diminished convergence rate. The sensitivity calculations require an average of
60 iterations to converge — about 2.7% of the time to compute the flow solution. The SEM
equations requires more memory than the Euler solutions because both the flow variables
(Q) and sensitivity variables (Q') are retained in memory during the calculation.

The performance of the wing’s lift and moment are summarized in Table 2 and Table 3,
respectively. A comparison is made with a standard semi-empirical formula for the lift-
curve slope which corrects the two-dimensional airfoil C;, for taper ratio, sweep angle,
aspect ratio and Mach number. Using the airfoil data, we estimate the section lift-curve
slope as C), = 6.0877/rad for a NACA 653 —018. Mach effects are introduced based on the
free-stream Mach number for the calculation, i.e., Mo = 0.5. The maximum thickness of
the airfoil occurs at z/c = 40%, which gives a sweep angle of Amax ¢ = 20.7562°.

The MAC/C.G. data is used to compute the moment slope via Cp, = —CL,hn. Note
that the center of gravity is estimated using relationships between the center of gravity and
the location of aircraft landing gear. Namely, we assume the landing gear is located 15° aft
of the center of gravity. The finite-difference values in the tables are computed using the
o = 0° and a = 8° Euler solutions. An argument could be made that these numbers should
be computed using an epsilon change in the angle of attack.
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Spanwise Local Moment Coefficient
YB-49 Flying Wing, M=0.5, A=7.4, 1=0.25
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Figure 5.10: Spanwise moment distribution along the wing.

CL,
a | Raymer Fin. Diff. SEM
0° — — 4.3089
4° | 4.2997 5.0715 4.0818
8° — — 4.0424

Table 2: Comparison of lift-curve slope between semi-empirical, finite-difference and
sensitivity-equation method.

5.1.9 Lateral/Directional Stability

Lateral /Directional Stability

Some data on XB-35 lateral/directional stability is presented in Northrop in his Wright
Memorial Lecture to the RAE. For this pusher-propeller configuration a considerable amount
of weathercock stability is provided by the engine-drive nacelles, as well as the propellers
themselves. Since our model does not include these features, it is expected that the bare-
wing estimate for C’nB will be smaller than Northrop’s data.

The sensitivity of the wing pressure to the sideslip angle is shown in Fig. 5.14 and
Fig. 5.15. The pressure sensitivity on the upper surface of the right wing is negative leading
to an addition to the local lift. The opposite occurs for the left wing where pressure
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Spanwise Stability Loading
YB-49 Flying Wing, M=0.5, A=7.4, A=0.25
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"Figure 5.11: Spanwise stability loading distribution along the wing.

CuM,
a | Raymer Fin. Diff. SEM
0° — — —-0.4613
4° | .0.4743 —0.6301 —0.4344
8° — — —0.4450

Table 3: Comparison of pitching-moment stability between semi-empirical, finite-difference
and sensitivity-equation method.

sensitivities are positive resulting in less lift. The lift differential leads to rolling/yawing
moment.

A comparison between Northrop's data, finite difference and the sensitivity-equation
method is given in Table 4 and Table 5 for the rolling and yawing rate derivatives, re-
spectively. These are sometimes called the effective dihedral and the weathercock stability
derivatives. The trends in the stability derivatives are consistent with Northrop’s data as
the angle of attack increases. As expected, the weathercock stability is less than the actual
aircraft which uses vertical fins for increased yaw stability.
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dp/da

91634.20
78337.91
65041.63
51745.35
38449.07
25152.79
11856.51
-1439.77
-14736.05
-28032.34
-41328.62
-54624.90
-67921.18

Figure 5.12: Upper surface

dp/da

91634.20
78337.91
65041.63
51745.35
38449.07
25152.79
11856.51
-1439.77
-14736.05
-28032.34
-41328.62
-54624.90
-67921.18

Figure 5.13: Lower surface
§

5.1.10 Summary

The sensitivity equation method (SEM), applied to nonlinear flow analyses, produces a
linear boundary-value problem. The solution to this problem is a flow sensitivity and de-
scribes, in linear approximation, the dependence of the flow-solution on a scalar parameter.
The derivative of any non-linear functional of the flow with respect to this parameter can be
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dp/db

Figure 5.14: Upper surface

Figure 5.15: Lower surface
]

easily computed from the chain rule. This latter calculation requires evaluation of a single
inner product so the computational effort is negligible.

While the SEM has a number of applications, in the present case we have applied
the method to the calculation of force and moment stability derivatives. The SEM is
computationally efficient; after calculation of the underlying flow, the linear boundary-
value problem is typically solved in 3% of the time required for a non-linear flow solution.
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Cy,

o | Northrop Fin. Diff.  SEM
4° | —0.029 —0.0347 —0.0318
8° | —0.057 —0.0696 —0.0667

Table 4: Computed effective-dihedral stability derivatives.

Chn,

o« | Northrop Fin. Diff. SEM
4° | 0.020 0.0159 0.0142
8° | 0.026 0.0215 0.0203

Table 5: Computed weathercock stability derivatives.

A single sensitivity can be used to calculate the derivative of a number of force/moment
functionals (e.g., Cnp, Cis,Cyp)-

Stability derivatives for asymmetric flight can be calculated based on a symmetric flow
solution so that configuration symmetry can be exploited. The method naturally extends
to calculation of control derivatives, body-rate derivatives and aeroelastic derivatives.

5.2 The Impact of Finite precision Arithmetic on Sensitivity

In this section we address some fundamental issues concerning “time marching” numer-
ical schemes for computing steady state solutions of boundary value problems for nonlinear
partial differential equations. Simple examples are used to illustrate that even theoretically
convergent schemes can produce numerical steady state solutions that do not correspond
to steady state solutions of the boundary value problem. This phenomenon must be con-
sidered in any computational study of non-unique solutions to partial differential equations
that govern physical systems such as fluid flows. In particular, numerical calculations have
been used to “suggest” that certain Euler equations do not have a unique solution. For
Burgers’ equation on a finite spatial interval with Neumann boundary conditions the only
steady state solutions are constant (in space) functions. Moreover, according to recent the-
oretical results, for any initial condition the corresponding solution to Burgers’ equation
must converge to a constant as t — oo. However, we present a convergent finite difference
scheme that produces false nonconstant numerical steady state “solutions.” These erro-
neous solutions arise out of the necessary finite floating point arithmetic inherent in every
digital computer. We suggest the resulting numerical steady state solution may be viewed
as a solution to a “nearby” boundary value problem with ﬁigh sensitivity to changes in the
boundary conditions. Finally, we close with some comments on the relevance of this paper
to some recent “numerical based proofs” of the existence of non-unique solutions to Euler
equations and to aerodynamic design.
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5.2.1 Introduction and Motivation

During the past twenty years there have been a significant advances in computational tools
for optimal design and control of fluid flows. Many of these tools are based on cascading
simulation software into optimization and/or control schemes. Although this method has
been applied to some complex aerodynamic control problems, very little has been done
to develop a rigorous theory of convergence for the resulting optimal design and control
algorithms. Even if the partial differential equation that defines the relationship between
state and control variables has a unique solution for each control, numerical approximations
may not preserve this uniqueness. In particular, the discretized state equations may yield
“false” non-unique solutions which may drive the optimization algorithm to an incorrect
design. As a first step in understanding when and why a particular algorithm converges
to an optimal design for the governing partial differential equations, it is essential to know
when and why these extraneous numerical solutions occur.

Herewe focus on just such an issue. In particular, we use a simple Neumann boundary
value problem for the one dimensional Burgers’ equation to illustrate that, because of finite
precision arithmetic, a convergent numerical algorithm can produce false (purely numeri-
cal) solutions. The main purpose of this work is to give an in-depth examination of this
model problem and to give warning in the use of numerical based proofs of uniqueness for
hydrodynamic problems.

The problem discussed in this paper is caused by computing on a finite precision machine
and is not caused by roundoff errors. Also, the issue considered here is not the same as
supersensitivity considered by other authors.

In 1993 Marrekchi, while working on a Neumann boundary control problem for Burgers’
equation, observed that a finite clement scheme used to design feedback controllers produced
non-constant steady state solutions. It is now known that these “solutions” are purely
numerical and, as we show below, most numerical methods will generate such false solutions.
If a boundary value problem as simple as Burgers’ equation with Neumann conditions can
lead to such complex phenomena, then it is reasonable to expect similar difficulties for
potential and Euler type equations.

Before turning to Burgers’ equation, we present a simple example that illustrates the
basic difficulty.

Example 1 Let o > 0 and consider the initial value problem

gﬂ = 9(y, ) a if y(z) <1+10a
r where g(y,0) = .
y(0) = 1 1 if y(z)>1+10x

The exact solution to this problem is given by ‘

14+ ax , 0<z<10
y(z) =
1+ 10a 4+ (z —10) , z>10

However, if we apply a standard numerical method, such as Euler’s method, to this problem
we see something very different because of the use of finite precision arithmetic. Namely,
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let Az be a small increment, define z; = jAz and y; ~ y(z;). Then the Euler iterates are
given by

yir1 = yj + 9(y; Az, Y =1,
and for j =0,

y1 = ¥o + 9(yo, @)Az = 1 + aAz.

Now for aAz sufficiently small and with finite precision arithmetic, y1 = yo = 1, ie., if
oAt is smaller than (1/2)21~¢ where d is the number of digits (assuming base 2 arithmetic),
then 1+ aAz = 1. (Note: the smallest positive number can be different than unit rounding
error (machine precision).) Thus, the numerical solution to this problem gives

yj =1, forall j2>0.

As an example, on a particular desktop computer using MATLAB, the machine pre-
cision is given in a variable denoted by eps whose value, for this machine, is eps =
2.220446049250313 10~1¢ satisfying

1 + eps = 1.0000000.

As a numerical experiment set Az = .005 and successively solve the above initial value
problem using Euler’s method as described above with a sequence of decreasing values
a=10"7 j=1, ---,14. For all j < 12 the sequence of iterates give the approximation to
the correct solution but when j = 14 the iterates give y; = 1. We note that in this case

Az x 107 =5x 10717 < eps < Az x 10712 =5 x 10715,

The solutions for these cases are depicted in Figure 1. The lines depict numerical solutions
for a = 10714 and o = 10712,

2]

0 5 10 15 20

FIG. 1. Machine Floating Point Problem

It is important to note that mesh refinement only exacerbates the matter. For example,
if @ = 10~12 and Az is reduced to Az = 5 x 107, then 'Az x 10712 = 5 x 10717 < eps.
Therefore, once again the numerical solution y; = 1 will be incorrect. On the other hand,
for a = 0 the solution to

) 0 if yz) <1
o where g(y,0) = ,
y(0) =1 1 if y(z)>1
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is given by y(z) = 1, and hence the numerical solution for 10712 = o > 0 is “correct” for
the problem defined by a = 0. We suggest that some of the numerical problems considered
below for Burgers’ equation follows a similar pattern.

Burgers’ equation on the interval (0,1) subject to Neumann Boundary Conditions is
given by the dynamical system

Wy — €Wgg + wwg =0, (5.19)
z € (0,1), t>0,€e>0,

wz(0,t) = we(1,1) =0,

w(z,0) = ¢(x).

We are interested in the corresponding steady state problem

—evgz(z) + v(z)vz () = 0,
02(0) = ve(1) = 0. (5.20)

Solutions of (5.20) are called stationary (or equilibrium) solutions of the unsteady prob-
lem (5.19). One approach to the development of numerical methods for solving (5.20) is to
solve the time dependent problem (5.19) and assume that w(-,t) — v(-) as ¢t — +00 . In
order to construct fast and accurate “time marching” schemes based on this idea, a number
of points must be considered. In particular, one should address the following issues.

(a) If possible, the questions of existence and uniqueness of stationary solutions to the
boundary value problem (5.20) needs to be answered. These are still open questions
for many fluid and gas dynamic problems.

(b) One needs to know that for reasonable initial data #(-), the time varying solution
w(-,t) exists for all ¢ > 0, tlig w(-,t) = v(-) exists, and v(-) is a stationary solution.
—+00

(c) The rate at which w(-,t) — v(-) is important because it can influence the efficiency
of the scheme.

(d) If one introduces a numerical approximation (with spatial mesh size Az) and con-
structs the numerical solution wA%(-,t) with the property that as Az — 0 (i.e. mesh
refinement) w?%(-,t) — w(-,t), then . fo wh%(., t) = v2%(-) needs to exist.

——+00

(¢) The limit v~%(-) is assumed (or proven) to be a good approximation to v(-). This
issue is more complicated than one might guess and it can fail in surprisingly simple
problems. k

Items (a) - (e) above do not address all of the of important issues. For example, as we
show in this paper, even if items (a)-(d) are satisfied and one can prove (this means using
infinite precision arithmetic) that v2*(-) — v(-), then problem sensitivity and finite precision
arithmetic can produce numerical solutions v2%(.) that do not approximate any stationary
solution! Thus, it is possible for a perfectly sound theoretical algorithm to produce “false”
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numerical solutions to the steady state problem. We demonstrate this point by a complete
analysis of Burgers’ equation with Neumann boundary conditions.

In the next section we present the basic analytical results for systems (5.19) and (5.20).
We then present some numerical results to illustrate the theoretical results and to demon-
strate a numerical anomaly for this problem. The remainder of the paper is devoted to the
construction and analysis of numerical schemes so that items (a)-(e) are established and
yet numerical solutions generated by these schemes do not approximate the true station-
ary solutions. We close with a discussion of how the results in this paper may relate to
“numerical based proofs” of nonunique stationary solutions for other problems.

5.2.2 Burgers’ Equation with Neumann BCs

As pointed out in our earlier work, the linearization about zero of (5.19) in L2(0, 1) is the one
dimensional heat equation with Neumann boundary conditions. A well known consequence
of the Fourier representation of the solution for this problem shows that the unique steady
state response, for any initial data ¢ € L?(0,1), is the constant function with value equal
to the average of the initial data, i.e.,

t&rgow(m,t) = /01 ¢(z) dz.

For Burgers’ equation with Neumann boundary conditions it is easy to see that, w(z,t) =
¢ for any ¢ € R and all (z,t) € (0,1) x [0,00) is a stationary solution. A somewhat deeper
result for (5.19), can be based on an infinite dimensional version of the Center Manifold
Theorem. For sufficiently small initial data in H(0,1), the solution w(z,t) of (5.19) tends
to a constant as t — oo. Since the Center Manifold Theorem is a local result it cannot be
used to make any general statements about the long time behavior of solutions to (5.19) for
larger initial data.

Another possible approach to determining the long time behavior of solutions to (5.19)
would consist in determining the existence and properties of a global attractor. Note that
since such an attractor must contain all stationary solutions, it must contain all constants,
so it must be unbounded.

Actually, a more relevant first question to answer is whether solutions even exist for all
time for all initial data ¢ € L2(0,1), i.e., is there a globally defined dynamical system.

In the 1957 paper by Kiselev and Ladyzenskaya, they prove the global existence and
regularity for multi-dimensional Burgers’ equation with Dirichlet boundary conditions using
a priori estimates and the maximum principle. While this paper is best known for its
contributions to Navier-Stokes theory it also has a section devoted to Burgers’ equation.

The main facts needed here are listed in the following theorem.

Theorem 5.1 For the system (5.19) with arbitrary initial data ¢ € L%*(0,1) and 0< T <
00,

a) There exists a unique globally defined weak solution so that for each T >0

w € C([0,T), L*(0,1)) n L*([0, T, H'(0, 1)),
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b) The solution is instantly infinitely smooth (and therefore cl‘assical) fort>0.

¢) Therefore, there is a globally defined dynamical system on the state space L%(0,1) given
in terms of a nonlinear semigroup {Ty,t > 0}, i.e., the solution is given by w(z,t) =
Ti(¢)(z) for initial data ¢. This semigroup possesses the following properties:

i) Ty is continuous in t and ¢ € L?(0,1).
it) T is compact fort > 0.

i) There exists a positive continuous monotone increasing function a(¢), £ 20
such that a(0) =0 and

ITell < alliell), ¢ €10,00), € L*(Q),

which means that the system is globally Lyapunov stable.

iv) There is a global, locally compact attractor A.

In order to see why there must be a global, locally compact attractor we note that by
the previous theorem:

1. For every R > 0, the ball By g is an absorbing ball for
Br = {y € L*(Q) : |¢Il < R}
2. This implies that for every R > 0, the dynamical system given by T3, restricted to
B,(r) has a nonempty, compact, connected (local) attractor, which we denote by Ag.

3. Tt is clear that R; < R, implies Ag, C Ag,, and hence we can conclude that A =
RL;OAR is the global attractor.

4. The global attractor .A is only locally compact since R C .A.

5. Indeed, for R > 0 sufficiently small, the attractor Ag for the ball B r(0) consists only
of constants (due to the center manifold theorem), i.e.,

AN BRr(0) = Ap = {c : |¢| < a(R)}.

We should comment that since the global attractor contains all stationary solutions and,
as we have already mentioned above, every scalar is a stationary solution, the attractor is
unbounded. Due to Theorem 2.1 it is locally compact. The exact composition of the
attractor has recently been settled by Edriss Titi and Chongsheng Cao.

Theorem 5.2 (Cao and Titi) For every initial ¢ € L?(0,1) there is a constant c so that

sup |z(z,t) — | 2%0.

z€[0,1]

The dimension of the global attractor is one and consists of the scalars.
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For fixed € and for small initial data, numerical approximation of the solutions to (5.19)
supports the conclusion of the Center Manifold Theorem and Theorem 5.2. In particular,
solutions tend to a constant as ¢ tends to infinity. But for fixed € and “certain” initial
data (not too small), some numerical solutions converge to a nonconstant function. These
same nonconstant steady state limits are readily obtained using many different numerical
algorithms and on various computer platforms. We are led to conjecture the existence of
some type of Numerical Stationary Solutions for the problem (5.19).

One class of initial data for which this occurs is the “antisymmetric” functions, that is,
functions that are odd about z = 1/2 in the interval (0,1),

L35(0,1) = {¢ € L*(0,1) : ¢(z) = —d(1 — 2)}. (5.21)

For initial data ¢ € L34(0,1), a straightforward consequence of Theorem 2.1 is that
w(-,t) € L44(0,1) for all t. This can easily be seen from the uniqueness and the fact that if
¢ € L44(0,1) and w(z,t) is the solution of (5.19), then the function z(z,t) = —w(l — z,1)
also satisfies (5.19) and hence

w(z,t) = —w(l — z,t)

i.e., w(-,t) € L35(0,1). Note that a continuous function ¢ in LZ(0,1) must satisfy ¢(1/2) =
0 and so, for t > 0 a solution with initial data ¢ € L24(0,1) will satisfy w(1/2,t) = 0 for
all t > 0. These comments establish the following lemma.

Lemma 5.3 The Hilbert space L%4(0,1) is invariant under the nonlinear semigroup T:
(defined in Theorem 5.1 part d)) for the dynamical system (5.19). Thus, for initial data

¢ € L35(0,1),
lim w(z,t) =0, for every z € [0,1].

t—00

Note that a weak stationary solution must satisfy the differential equation

2
<—€’Uz + 2..) = 0, (5.22)
2 T

where all the derivatives are understood as weak derivatives and the equality holds for
almost every z. One possibility is that v is a constant, in which case we have,

2

v

= —. 5.23
0= (5.23)

Clearly a constant provides a stationary solution since, in addition, it satisfies the boundary
conditions.
The only distributional solution of the equation

¥'(z) =0
is a constant, so any other stationary solution to (5.19) must satisfy

2
—evy + v_2_ =¢g, ¢p € R. (5.24)
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This equation can be solved explicitly with solution given by

v(z) = v2co tanh (\gzea(cl - x)) , (5.25)

where ¢o and ¢; are arbitrary constants. A straightforward calculation yields
V2
vz(z) = ——Céo—sech2 (-—i-gcﬂ(cl - x)> , (5.26)

and these functions cannot vanish at £ = 0 or z = 1 (unless co = 0). Thus, as we
already know from Theorem 5.2 the only stationary solutions to Burgers’ equation satisfying
homogeneous Neumann boundary conditions are constants.

The nonconstant functions v(:) given by (5.25) form a two parameter family depending
on the parameters co and c1. In order that such a function be in L%¢(0,1) it follows that
¢1 = 1/2. We shall focus on functions h(-) € L24(0,1) defined by

h(z) = v/2co tanh (-‘/—Zcﬂ(l /2 - m)) . (5.27)

Although h(-) satisfies equation (5.22) exactly, it only approximately satisfies the bound-
ary conditions (to within exponentially small terms). Namely, the functions in (5.27) satisfy

(5.22) and
K(z) = —%sech2 (%—6—0(1/2 - a:)) , (5.28)

which for small € and/or large co gives

R'(0) = h'(1) = ——cegsech2 (%) = —q, (5.29)

where a is an exponentially small positive number.
Thus, if « is close to 0, then the “nearby” steady state problem defined by Burgers’
equation
—evrz(2) + v(z)v=(2) =0, (5.30)

with (nonhomogeneous) Neumann boundary conditions
2(0) = vs(1) = —a, (5.31)

will have non-constant solutions h(-) given by (5.27). As we see below, these solutions may
appear as the limit (as ¢ — +00) of the numerical solutions to the boundary value problem
(5.19).

5.2.3 Motivating Numerical Examples

We now provide several examples in order to demonstrate the actual behavior of numerical
solutions to (5.19). In all of the simulations given in this section we have set € = .1 and have
applied the finite difference method presented below with spatial mesh size Az = 0.0125 =
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1/80 and temporal mesh size At = 0.0004. We conducted these numerical experiments
on varying time intervals and for a variety of initial data. We note that the same results
occur for a wide variety of finite element, spectral approximation, and other finite difference
schemes.

Observe that the all of the initial data ¢(-) belongs to L3g(0,1) so that, by Lemma
5.3, the solution to (5.19) should approach zero as t — +00. Indeed, this is exactly what
happens when the initial condition ¢(-) is “small”, as illustrated in Figure 1 and Figure 2.

initial condition

o 0.2 0.4 o8 0.8 1
x

0.5
0.2 Y
- initial condiition

[} 0.2 04 os os 1

FIG. 3. Initial data ¢(z) = 5(1/2 — z)® and final time T' =10
However, when the amplitude of the initial data is increased we observe that the nu-
merical solutions do not converge to zero. In fact, they appear to converge to a solution of
the nearby problem defined by (5.30)-(5.31). More will be said about this phenomenon in
the conclusions. In Figure 4 we have increased the amplitude of the cosine function from 1
to 5 and in Figure 5-we have increased the amplitude of the cubic initial function from 5 to

20

n
[
@

0 02 o4 08 08 1
x

x

FIG. 4. Initial data ¢(z) = 5cos(rz) and final time T' = 0.25
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FIG. 5. Initial data ¢(z) = 50(1/2 — z)® and final time T = 0.25

Next we consider an initial condition to show that the same results hold even for initial
data that are not strictly decreasing. In particular, we consider the initial function ¢(z) =

1 1 3 .
A (Z - :c) (5 - m) (Z — :z) for various values of A.

x

FIG. 6. Initial data ¢(z) =5 (% - m) (—;— - z) (% - a:) and
final time T' = 10

\\Jmlli;»mo:r
. \\
1 ‘71 3
G. 7. Initi = - _ - s _
FIG. 7. Initial data ¢(z) 50 (4 :II) (2 m) <4 :c)

and
final time T = 0.25

Once again we see that for A small, ast — 00 the numerical solution converges to zero,
as it should. But for a larger amplitude A the numerical solution converges to a nonconstant

steady state.
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Finally we take the negative of the initial data that gave rise to numerical solutions
which converged to nonconstant steady states and we note that these solutions tend to
zero very quickly. Consequently, nonconstant numerical steady state solutions do not occur

simply because of larger magnitude initial data.

n

0 05 1
Initial condition

" H i
] 02 c4 os o8 1
X x

FIG. 8. Initial data ¢(z) = —5cos(rz) and final time T=25

L)

0 0:5 1
Initia! condiition

1 t ] 02 0.4 0.6 o8 1

FIG. 9. Initial data ¢(z) = —50(1/2 — «)® and final time T’ = 2.5

. ' Jmt‘:::ndﬂo:v
FIG. 10. Initial data ¢(z) = —50 L T ! T 3 T
. 10. ial da = 1 5 i

and '
final time T' = 2.5
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initial data T o |h - Rlloo h'(0)
cos(m(1/2 — x)) 10.00 5.85¢-06 8.57e-04 -5.85e-05
5cos(m(1/2 — z)) 0.50 1.24e+01 8.08e-02 -7.65e-09
—5cos(m(1/2 — z)) 250 8.71e-04 5.32e-02 -8.62e-03
5(1/2 — z)3 10.00 1.74e-07  2.74e-05 -1.74e-06
50(1/2 — z)° 0.50 1.56e+01 1.15¢-01 -4.64e-10
—50(1/2 - z)3 250 5.44e-04  4.29e-02 -5.41e-03
1 1 3
s{z-z) 5-2){z7-¢ 10.00 7.54e-08  1.18¢-05 -7.54e-07
1 1 3
50(7-2)lz-2) 772 0.50 7.31e+00 3.56e-02 . -1.46e-06

—50 (i — z) (% - x) <% — :c) 2.50 2.84e-04 3.26e-02 -2.83e-03

TABLE I: Initial conditions, final time T, m/l\merically computed cp, maximum
difference between h(-) and h; = h(jAx) for j =0,1,---, (N+1).

In order to draw attention to the actual functional values of the apparent nonconstant
steady state, in the above examples we denote by h(z) the numerically computed stationary
solution. To be precise,

h(z) = Jlim w®(z, 1),

where w?%(z,t) is computed by the Crank-Nicolson scheme described in the next section.

We now let ~
~ h?(0
co = —€hz(0) + ——é—)-

In every Figure 2 - 10 the curves (plotted on the right side) depicting the numerical solu-
tion at the final time value T actually contain plots of both the numerical solution h(-) and
the explicit function defined by equation (5.27) which only “nearly” satisfies the boundary
conditions.i.e., '(0) = K/(1) = —a. Observe that h(-) and h(-) are not distinguishable on
this scale. In Table I we have compiled a list for comparison of various parameters for our
numerical examples. For all examples we have set € = .1 and N = 80 (the number of nodes
for the Crank-Nicolson scheme).

5.2.4 A Symmetrized Crank-Nicolson Method

It has been observed that applying standard numerical methods to the system (5.19) for
certain initial data in L2g(0,1) produces pumerical nonconstant steady state solutions.
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However, Lemma 5.3 implies that not only must these solutions be constant, the constant
must be zero. The objective of this section is to prove that the observed difficulty is due
to the use of finite precision arithmetic. To do this we need to first obtain a very stable
numerical scheme on which to base our proofs. The reason for this concern is that if, for
example we employ a straightforward finite difference scheme to approximate (5.19) on the
whole interval (0,1), then no matter how small the spatial discretization or the time step
size, eventually round-off error will corrupt the data at z = 1/2 (where the solution is
known to be zero for all time). Because of this, there will always be a time at which the
numerical method will undergo a rapid change and then generally converge to a nonzero
constant. The sign of this constant depends on whether the value of the numerical solution
first begins to drift positive or negative at = 1/2. So our first step in obtaining a more
stable numerical scheme consists of the reduction to a problem with a Dirichlet boundary
condition at z = 1/2.

From Lemma 5.3 we see that for initial data ¢ € L35(0,1) we can replace problem (5.19)
by the system

Wi — €Wzy + WwWy =0, (5.32)
z€(0,1/2), t>0,

wy(0,8) =0, w(1/2,8) =0,

w(z,0) = p(z).

Thus, we need only solve the Burgers’ equation on an interval of half the length and, more
importantly for numerical calculations, we have replaced a Neumann boundary condition
at £ = 1 by a Dirichlet Boundary condition at z = 1/2.

Consider a standard implicit finite difference scheme for the system (5.32) on the interval
(0,1/2) with

. . 1
z; =1iAz, i=0,1,2,...,N, Am—(2N),
At At
v= =€——, ;=] =0 gy ooy
1= A0 K E(Ax)2’ s =JAt, J ,1,2

and, in a standard notation, define the approximation
wi,jzw(xi,tj), i=0,1,2,...,N, j=0,1,2,....

Then, we have for i =1,2,--- ,(N —2)

K
w41 =Wy + 5 [Wir1g — 2Wi + Wie1,g]

2
R 1
+ 5 [Wisn 41 — 2Wij41 + Wwi—1,j+1] (5.33)
gl ¥
+ Swij [Wie1) = Wimtg) + gWiget [Wirng — wi-ig],
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and for i =0 and i = N — 1 we have
K K
wo,j+1 =Wo i+ 5 [2w15 = 2wo, ] + 35 [2w1,j41 — 2wo,j+1] (5.34)

K
WN-15+1 =UN-15 + 5 [F2wN-15 + WN-2,]

K
+ 5 [F2wn-1541 + wN-2,41] (5.35)

-~ ~

v v
+ EwN—l,ij—Zj + -2-wN—1,j+1wN—2,j+1-

Note that to obtain (5.34), we let
(wy; —w-1;)/(2Az) =0 and wy; =0 for all j>0.
For this difference scheme let

W_N+1,j
W-_N+2,j
wW; = :
WN-2,;5
wN—lyj

denote the solution at time step t;. Then, we shall prove the following result.

Theorem 5.4 For any piecewise continuous initial data w(z,0) € I24(0,1) and N suffi-
ciently large

llwjlla 2= 0.

That is, for every initial condition in L%5(0,1), the finite difference solution converges, for
every N sufficiently large, and the resulting limit is zero.

For analysis purposes, it is useful to extend this difference scheme to the symmetric
interval (—1/2,1/2) with Dirichlet conditions at each end as long as we note that in the
approximations of the first derivative terms the signs must be reversed. Thus, for i =
~N+2,-N+3,...,—1 we have

K
Wit =wig + 5 (Wi — 2wis + Wio1]
K
+ 5 [Wirge1 — 2w + Wi—1,j+1] (5.36)

~

S

) gl
— Zwiy [wirty — wim1g] = Wi Wiktg — i),
with
K
WoN+1j41 =W-N+1j F 5 (—2w_N41,j + W-N+2,5]

K
+ 5 [F2w-N g+ woN2,41) (5.37)

Y Y
- Ew—N+1,jw—N+2,j - a"w—-N+1,j+lw—N+2,j+1‘
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The resulting difference scheme can be written in vector form as

Awjp = BWJ' + %’W] + %W}u{.l, (538)
where

141 —3 0 | 1-x = 0 ]

L K £y 2 L 5
A= 2 ., B=| 2 2 ,
K K
0 — 1 - —
i 5 + ~| I 0 5 1 w]

W-N+1,jW~-N+2,j
w_N+2,; (W_N41,j — W-N+3,7)

W; = : ,
wy-_2,; (WN-3j — WN-1;)
WN-1;WN-2,j
WoN+1,j+1W-N+2,j+1
W_N42,j+1 (WoN4+1,j4+1 — W-N+3,j+1)
Wi = :

WN_2,j+1 (WN—3,j+1 — WN—-1,j+1)
WN-1,j+1WN-2,j+1

After simplification this system can be written as

Awjy = —Bw; — ZWJ- - Z—W,q,l, (5.39)
with
-—2 - —’2; 1 ) 0 ] -% -2 ) 1 0 1
a=| VTR , B= 1§21 . (5.40)
I 0 1 -2- 72;_ L 0 1 —2,; — 2_

It is well known that the matrix A is invertible and so once again we can rewrite the
system (5.40) as

Wi = —A" Bw; — %A“IW,- - %A—IWM, (5.41)
and thus we have
wjtille < [|A7 Bllallwslla + %||A_1l|2||wj||2 + %“A—1H2”Wj+1“2' (5.42)

We need the following result in order to prove Theorem 5.4.
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Lemma 5.5 The eigenvalues of the (m — 1) x (m — 1) tri-diagonal matriz

a 1 0
1l o 1
T= .
0 1 «
are )
(2+a)—4sin2(zi;%>, i=12,...,2m-1.

Thus, the eigenvalues of A are
2 i
~Z 4sin® | — i =1,2,...,2N —
- sin <2N>’ i b 2,...,2 1,

and the eigenvalues of A-lB are

Proof. (of Theorem 5.4) Let

-1 _ _ . .
|[A™*Blls=8= 15}2%1)\3-1'6“ and notice that 8 < 1.

Since .
1472 < 5,

we have

¥ ¥
[wsllz = Bllwsllz + 51 Will2 + 2 IWisll2,
and the inequalities
IWjlle < 2iwsl3,  [Wiralle < 2liwsall3,

imply
[wjsill2 < Bliw;llz +Flw;l13 + Flwjzall3-

If ¢ = |wjz1ll2, s = [[w;ll2, then (5.45) can be written as
¢ < Bs+7s" +75¢

Define 7 = 8s + ¥s? and so %¢2 — ¢ +r > 0 so that ¢ must satisfy

e 2
¢= 25 - 2y

40

1-VT= B _ (@r/2) + GO o gz <374,

(5.43)

(5.44)

(5.45)

(5.46)




In order to justify the last inequality, we show that for 0 < £ < 3/4

2
This inequality follows from the chain of implications

3
<¢E< -
0_5_4

1 2\? _ [2)?

2i5) <2

(5+%) <)
Rearranging and multiplying by £2, gives

4, (€ 2,4\
-3¢ +<§+§§> <0.

Adding (1 - £) to both sides and rearranging terms gives

AW AN
1—2(§+—'§—)+<§+—9—) <1-¢&.

The left side of this expression is a perfect square so we have

§ 4,
1—'2'—'55 < V1=¢,

and finally we have
£ 28
1__,/1_£<.2_+_9_‘

Setting ¢ = 45r yields inequality (5.46).
Returning to the estimate (5.46) we have that if 437 < 3/4, then

o~

C<r+lg—’y'r2.

Now choose 8 so that (8 + 8) < 1. Suppose that, as a very conservative estimate,
s = ||[wjll2 < 9/(47). Then

and
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Hence, if ||w;ll2 < 8/(47) then

[wjisillz < (B+ 8)||lwjlla, where B+8<1.

This implies that ||w;]la — 0 as j — oo, provided that [[wol|l2 < 8/(47). Note also that
when || w;|j2 < 8/(47), then 43r < 9 (B8 + 0/4) < 8. Thus, we also need 8<3/4.
Recalling the definition for ¥ = At/(2Az) we have
8 (1-p)Ax
<o < n—
Iwolle < 2= < =55
Generally we would require that At is somewhat smaller than Az. Indeed, it is possible
to take
e(Az)? < e(Az)?
4 2
so that the initial requirement would be

20-6) _41-BN

eAx €

At =

lwoll2 <

. . 1 . "
where in the last equality we have used Az = ——. Therefore, we see that this condition

is not really a restriction, except for numerical difficulties, since we can take N sufficiently .
large to include any given piecewise continuous initial data and this completes the proof. O

5.2.5 Stationary Solutions of Explicit Finite Difference Schemes

In this section we consider several explicit finite difference schemes for the problem (5.19)
and make some observations concerning the existence of nonconstant stationary solutions
for these discrete schemes. In this section we assume that N, the number of spatial nodes,
is even and we set Az = 1/N, for i = 0,1,..., z; = tAz and t; = jAt. We consider
three different schemes based on forward difference in time, central difference for the second
order term, and three different approximations for the convective term. (Recall the notation
Wij ~ ’U)(.’I)-L', tj).)

Example 2 Centered Difference wwy: Fori=0,1,2,--, N

(wij41 — wij) Wit1j — 2W; 5 + Wi—1,5 Wit1,j — Wi-1
, J) _ , . G| g, |Withd —Wiski | 47
At ¢ (Az)? Wi (2A7) (547)

Woyj =Wij WN+lj = WN-1;-

The steady form of (5.47) is given in terms of a function v(z) with v; = v(z;) by

Vig1 — 2v; + vy — 11 (Vig1 —vim1) =0, i=0,...,N (5.48)
A
v_y =7v1, UN41=0UnN—1 and 71 = —2%- (5.49)
For this case (5.48) has one stationary solution, the constant solution, i.e., for any ¢ € R,
v; =cfori=0,1,..., N is a solution. But, there is another solution given by
0, i=N/2
v;i=<1/r;, 0<i<N/2-1 (5.50)

~1/ri, N/2+1<i<N.
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Example 3 Centered Difference (w?);/2: Fori=0,1,2,--- ,N

(Wij+1 — wij) _ ) ['U)H-l,j = 2w; j + 'wi—l,j] 1 [wi2+l,j - wiz-l,j] (551) -
At (Az)? 2 (2A7)
W-1j =W1; WN+1,j = WN-1,j-
The steady form of (5.51) is
vig1 — i + vy — 7o (V2 —vi ) =0, i=0,...,N (5.52)
v_1 =71, UN41 =UN-1 and T2 = % (5.53)

For this case (5.52) has a solution v; = ¢ for i = 0,1,..., N for any c € R. Again there
is a second solution given by

0, i=N/2
vi={1/ry, 0<i<N/2-1 (5.54)
~1/ry, N/2+1<i<N.

Example 4 Forward Difference wwg: Fori=1,2,,N —1

(i j+1 — i j) _ | Wi — 2wij+wi-1| | Wiy — Wi-1j (5.55)
At (Az)? I (Az) )
woJ = wl’j wN)J = wN'—lvj'
The steady form of (5.55) is
Vip1 — 20 + v — 713y (vi —vim1) =0, i=1,..., N-1 (5.56)
A
vg =7v1, UN =vUN-1 and r3= —} (5.57)

However, in this case, one can show that the only stationary solution is the constant solution
vi=cfori=1,...,N-1

The above examples illustrate that discrete versions of the steady state problems can
have non-constant discrete solutions. Thus, if one uses one of the methods (5.47) or (5.51),
then any numerical algorithm (time marching, direct, etc.) could produce a discrete non-
constant stationary solution. This can happen even when the original partial differential
equation does not have such nonconstant stationary solutions. Thus, the numerical station-
ary solutions are not approximate solutions to the steady state partial differential equation
(plus boundary conditions).

On the other hand, the scheme (5.56) only has constant discrete stationary solutions.
Therefore, one might expect that if the discrete equations (5.56) are used then numerical
solutions based on this type of algorithm will not produce false solutions. However, because
of finite precision arithmetic, this assumption is not valid.
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5.2.6 The Effect of Finite Precision Arithmetic

In reality, all calculations are done in finite precision arithmetic. Even calculations using
computer algebra systems that purport to be capable of infinite precision are actually limited
by memory and storage limitations. More realistically, floating point arithmetic is commonly
used in computational work and floating point arithmetic is based on a finite set of numbers
and a finite precision arithmetic. Furthermore different machines have a different set of
numbers and precision. We plan to show, by way of examples, that the reason for the
anomaly observed in this work is due to the necessary use of finite precision arithmetic. We
have already seen in the last section that using exact arithmetic the symmetrized Crank-
Nicolson numerical scheme must converge to zero for initial data in L35(0,1). In this section
we show that by altering only the magnitude of the initial data, the value of the viscosity
€ and the precision, we can generate solutions that converge either to zero or to one of the
analytic solutions that only approximately satisfy the boundary conditions. We note that
for € fairly large (for example € = 1/2) convergence to a nonconstant numerical stationary
solution requires larger magnitude initial data and for smaller € we can take the magnitude
to be much smaller. (Note that the Crank-Nicolson scheme is used for all the calculations
in this section.)

In our first example we consider an initial condition which happens also to correspond
to a possible fixed point of the finite centered difference scheme used in Example 2. Fix N,
€, and U > 0, then define the initial data

U 0<z<1/2
o(z) =<0, z=1/2 . (5.58)
_U, 1/2<z<1

Although we do not include the proof here, we have shown that, with full (infinite) preci-
sion arithmetic, the spatially centered difference spatial discretization and Euler marching
scheme for U < 1/r; = 2Ne converges to zero with increasing time. Thus, this example
provides a good test for our hypotheses that numerical stationary solutions arise from finite
precision arithmetic.

In this numerical example, we take N = 40 and € = 1/5 so that in (5.50) r; = 1/16.
Thus, a stationary solution for the centered difference method is given by

1/r,, 0<z<1/2
v(z) =<0, z=1/2 . (5.59)
—-1/ry, 1/2<z<1

For the first numerical run we take initial data with U = 8 and we successively choose
the number of significant digits to be d = 4, 8,16 for numerical simulation.
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Notice, as shown in the following table, that the values continue to drop for d = 16

0.2 0.4

02

___________

d=16

FIG. 11. Piecewise Constant Initial Condition U = 8

while a steady state is reached for d = 4 and d = 8.

t
0
10
20
30
40
50
60
70
80
90

d =4
8.00000000000000
7.99900000000000
7.99900000000000
7.99900000000000
7.99900000000000
7.99900000000000
7.99900000000000
7.99900000000000
7.99900000000000
7.99900000000000

100 7.99900000000000

d =8
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000

=16
8.00000000000000
7.99985129822842
7.99970174625331
7.99955214983113
7.99940250894646
7.99925282355433
7.99910309364852
7.99895331919820
7.99880350016796
7.99865363654645
7.99850372828631

3

TABLE II: Valuesat z =0

Now consider a smaller value U = 4 and repeat the same calculations.
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d=16
FICG. 12. Piecewise Constant Initial Condition U = 4

Notice as shown in the Figure 11 and the following table, the computed values continue
to decrease to zero for d = 8 and d = 16, but a non-constant solution is reached for d = 4.

t d =4 d =8 d =16

0  4.00000000000000 4.00000000000000 4.00000000000000
10 4.00000000000000 3.58872030000000 3.58892931217814
20  4.00000000000000 2.13481320000000 2.13685522204510
30  4.00000000000000 0.00000025606987 0.00000025848659
40  4.00000000000000 0.00000000000000 0.00000000000000
50  4.00000000000000 0.00000000000000 0.00000000000000
60 4.00000000000000 0.00000000000000 0.00000000000000
70 4.00000000000000 0.00000000000000 0.00000000000000
80  4.00000000000000 0.00000000000000 0.00000000000000
90 4.00000000000000 0.00000000000000 0.00000000000000
100 4.00000000000000 0.00000000000000 0.00000000000000

TABLE IIL: Values at =0

If we now take U = 1/r = 16 then the initial condition is a stationary solution for the
particular values N = 40 and € = 1/5. Indeed, when we run the same calculation as above
we obtain the plot given in Figure 13.
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FIG. 13. Relation to Stationary Solution of Discrete Problem

In each case above, at each time step, we have also computed the numerical value of the
derivative of the solution @ at z = 0 and used the fact that
_ w(0,2)? ewx(O, t)
2 2

to obtain

2
o = L0 W15 — Wo,j
0= — €| ————= .
Az

At each time step the above graphs also include the graph of

hji(z) = \/ggtanh _\_/_2—c§

4e

whose derivative at zero is

wI(O,tj) =~ ’UJJ;,;(O) = ——-Egsech _4_6—

In the last case we have cg = 128.0 for all j and the approximation to the derivative is

w;z(0) = —1.091071

5.2.7 Finite Arithmetic and Convergence to Steady State

Let 3 denote the base for a computer system and t the number of digits. On the interval
[6m~1, B™], the floating point numbers are evenly spaced with separation ™.
ﬁm_‘ @) ag pm

{ | { .|
I T I

FIG. 14. Floating Point Numbers ag = a1 + gt
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Let z3,29 € [™71,8™] be two floating point numbers. If |z; — o] < %,B’""t, then
1 = 9. Thus, if
1 1
o1~ 22| < 2™ < 6l

or, if
|71 — o] lﬁl—t
|z1| 2"
then z; = z».
Consider the non-homogeneous problem for Burgers’ equation on the interval [0,1/2]

given by

Wi — €Wgy + Wwy =0, (5.60)
wz(0,8) = —a, a>0,

w(l/2,t) =0

w(z,0) = ¢(z),

If & = 0 then we know from Theorem 5.2 that w(z,t) — 0 ast — oo. If a # 0 we expect
from our numerical evidence (and the discussion in the next section) that

w(z,t) =, h(z) = /2co tanh (\/—3;_6—9(1/2 - x)) ,

where 5
R'(0) — Lsech? (—-—VC") =—a.
€ 4¢
Consider the Crank-Nicolson scheme for (5.60) and let

(wij —w-1,4) _

2Azx %

so that
wy; = —QG(A.’D) + w_y ;.

2aAx 2aAzx
weoy; =wi; |1+ " ~wyj|l+ ™ ,
1, J

It follows that

and hence, if 2a(Az)/wo ; < (1/2)8'%, then w_1; = wy ;. This implies that the condition

(wl’j - w—l,j) — 0
2Azx ’

is equivalent to

2Azx =%
if
2a(Az) 1 44
8
wo,_,' 2
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Thus, even when o = 0 the solution on any computer may converge to (approximately)

h(z).
In order to examine this more closely, consider the inequality
QQ(AZ) < lﬁl_t.
wo,j 2

It is reasonable to expect that wp; ~ ¢(0) if a nonzero steady state is quickly reached.
Consequently, if

V2¢o > 1,
4e
then
#(0) =~ h(0) = v/2co.
Assuming that f:o > 1, we have
« z4c—o-exp <— ; 260) R
€ 2¢
and
2a(A:z:) < }_ﬁl—t
wo,j 2
can be approximated by
8(Az)¢(0) —4(0) 1 1
5e exp | —5- < 2,5 . (5.61)

Consider once again the numerical example above with initial data given by (5.58)
restricted to the interval [0,1/2]. In particular, we take

_[U, 0<z<1/2
¢(x)_{0’ P (5.62)

We take 6(0) = U, the number of digits d = ¢, 8 = 10, §z = 1/80, € = 1/5 and for the
numerical scheme we have taken a time step size of ot = 1/4000. If

U —5U 1. 1.4
Zexp (———2—> < —2-10 ,

we expect the computed solution may approach a nonzero, steady state.

For U = 4 and d = 5 we have
U -5
TP (_9@) = 0.4539992976248510™¢ < 0.5 x 107* = %101-",

so we expect that the solution will converge to a nonzero steady state.
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FIG. 15. Trajectories at t; =107, j =0,1,--- ,10 withd =5
For U = 4 and d = 6 we have

v exp (:%Q) = 0.4530992976248510~% > 0.05 x 10~* = -;-101—"

4

so we expect that the solution will converge to a zero. This behavior is demonstrated in
Figures 15, 16 and Table IV.

0 0.2 0.4 0.6 0.8 1
X

FIG. 16. Trajectories at t; = 10j, j =0,1,--- ,10 with d =6

t d =5 d =6
10.00 4.000000 3.60426000000
20.00 4.00000 2.32885000000
30.00 4.00000 0.000000737544
40.00  4.00000 0.000000000000
50.00 4.00000 0.000000000000
60.00  4.00000 0.000000000000
70.00  4.00000 0.000000000000
80.00  4.00000 0.000000000000
90.00  4.00000 0.000000000000
100.00  4.0000 0.000000000000

TABLE IV
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5.2.8 Sensitivity and Stability Analysis

For a small positive number o we replace the problem (5.19) in L35(0,1) with homogeneous
Neumann boundary conditions by the following problem with non-homogeneous Neumann
boundary conditions:

wy — €wgg +wwy =0, z € (0,1), (5.63)
z€(0,1), t>0
wz(oyt) = wz(11t) =-a, a> 0’

w(z,0) = ¢(x).

We show below that solutions of (5.63) are highly sensitive to the boundary condition

parameter a.
For ¢ E.L:{\S(O, 1) the solution w(-,t) remains in L25(0,1) for all t > 0 by Theorem 5.3.

Therefore, the Burgers’ problem (5.63) is equivalent to

wy — €Wgz +wwg =0, € (0,1/2), >0 (5.64)
we(0,t) = —a, w(1/2,t)=0, a>0,
w(z,0) = ¢(z).

The stationary problem associated with (5.64) isgiven earlier in (5.30), (5.31). We also
note that in LZ4(0,1) we can replace this problem by the equivalent problem

€Uy — vz =0, z € (0,1), (5.65)
v:(0) = —a, v(1/2) =0. (5.66)

which, for numerical work, is more tenable.
As we have noted, the function (5.27) satisfies stationary Burgers’ equation and the

derivative at z = 0, 1 satisfies (5.31) (and (5.66)) provided
R'(0) =K' (1) = —c. (5.67)

This amounts to finding co that satisfies the equation

D sech? (%) =a. (5.68)

€

In the space L%5(0,1) there are exactly two solutions of (5.68) for « small enough.
Namely, there exist ¢5 ~ 0 and cg > 0 giving

h<(z) = y/2c§ tanh (———'22605(1/2 - :c)> (5.69)
h>(z) = /2cg tanh (-————‘22:5(1/2 - z)) (5.70)
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and these functions satisfy the nonhomogeneous boundary conditions

h:(0) = —a. hg(l) = —a.

To see that there are exactly two such values of ¢o for small @, let s = \/G5/(2v/2€) so
that equation (5.68) becomes
2 2,y _ &
s“sech®(s) = "
The function f(s) = s?sech?(s) has a critical value at so ~ 1.2. This allows us to conclude
that the maximum value of f is M, = 8esgsech®(so). From the graph of f in Figure 17, it
is clear that this maximum imposes a smallness constraint on a. Namely, in order for the

conditions in (5.67) to be satisfied, we need
a< M.

For fixed € and o sufficiently small, we see that there are two solutions given by (5.69) and
(5.70) and both functions satisfy the conditions in (5.67).

The solution h<(-) is very nearly the zero function, whereas the solution h”(-) is not
usually small.

FIG. 17. Graph of f, for e = .01 and o = .007
FIG. 18. Graph of h<(-), for € = .01 and ¢y = 7.7287e — 05

FIG. 19. Graph of h”(-), for € = .01 and ¢p = .0072

In each of Figures 18 and 19 there is actually two functions plotted, h computed numer-
ically and also from the formula (5.27).

A complete analysis of the mathematical validity of these stationary solutions for Burg-
ers’ equation involves a careful analysis of the long time behavior of solutions to the dy-

namical system
Wy — €Wz + WWz = fo
w,(0,4) = w,(1,6) =0,
w(z,0) = §(c),
fo = a8 — &) € H1(0,1)

4

Here, §, denotes the §-function concentrated at z = a. and by H ~1(0,1) we denote the
dual of H!(0,1) which consists of all distributions from H ~1(R) whose support belongs to
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| [0,1]. For small a and small initial conditions ¢, one knows that global in time existence of
| solutions to the above system and the existence of a compact local attractor. Unfortunately,
for larger initial conditions these results do not apply for f, as above.

5.2.9 Linearization about Numerical Stationary Solution

To determine the stability properties of these stationary solutions we follow the development
for a similar problem given by Kreiss. Namely, after a reduction to the interval (0,1 /2), we
consider the spectral analysis of the linearization of the Burgers’ system (5.63) in L24(0,1/2)
about the function A(-) in (5.27). We will show that for a fixed ¢, the first eigenvalue of this
linear problem is negative if ¢ is small. But for larger co this eigenvalue becomes positive
and then decreases monotonically to zero. The remaining eigenvalues of the linearized
problem are all negative. Thus for co small the stationary solution is stable and for the larger
value of co the corresponding stationary solution is unstable. However, the first eigenvalue,
which is positive, is so small that the dynamics still can converge to a nonconstant stationary
value. '
To this end, let
w=h+08z, z¢€L%g(0,1),

substitute this into (5.63) and collect terms of order one in § to obtain
2z — €wzg + (hz)y =0, (5.71)
z€(0,1), t>0
2:(0,t) = zz(1,¢8) =0, a>0,
z(z,0) = zo(),

where generally we assume that zg is small in Lis (0,1).
We can replace this problem with the numerically stable problem on the half interval

(0,1/2) given by

2t — €Wzy + (hz); =0, (5.72)
z€(0,1), t>0

z.(0,t) = 2(1/2,t) =0, a >0,

2(x,0) = zp(z).

Associated with this problem we consider the spectral problem
e0es — (h0)s = Ao, a(0) = p(1/2) = 0. (5.73)

It is useful for computations to replace this eigenvalue pr(;blem by a self-adjoint problem,

so we let - (/1:2 htS) ds) = sech <\/—22—gc§ (% - x)) , (5.74)

and seek ¢ in the form
¢ =mp.
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After some straightforward calculations we find that the problem (5.73) can be replaced by
the problem

Pz — qb = M,  ¥z(0) =9(1/2) =0. (5.75)
where ] 1
I
q(z) = 4eh + 2hx.
Since h satisfies
h2
“hz + ‘2_ =Cg
we have
g(z) = (%) (1 — 2sech? (@(1/2 - a:))> . (5.76)

We must also consider the transformation of the boundary conditions. Note that

0= 2(0) = 100) (4:0) + HOW()).
0= p(1/2) = n(1/29(1/2) = $(1/2).

Thus, we arrive at the eigenvalue problem

Lot = Yuo — ay¥ = M, (5.77)
subject to the boundary conditions
¥=(0) +3%(0) =0, %(1/2)=0 (5.78)
where 1 _
¥= Eéh(o)’ X=Xe g, =7(1- 2sech?(y(1/2 — z)). (5.79)
As Kreiss noted the first eigenvalue of (5.77)-(5.78) satisfies
~ L
M<! II:;IIIJH

for all functions ¥ € L2(0,1/2) that are sufficiently smooth and satisfy the boundary con-
ditions (5.78).

Lemma 5.6 If v/2co/(2¢€) > 4, then there are positive constants C and D, independent of
€, so that the smallest eigenvalue of (5.77)-(5.78) satisfies

!Xll < %e"De—l. (5.80)

Let

ii(z) = n(z) — 2n(0)
where 7 is defined in (5.74). We note that 7 is a symmetric function about z = 1/2, it
satisfies the boundary conditions (5.78) and is smooth. Also we have

L7 = 2qn(0).
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Thus, we have the estimate

[2%1ls
711>

1/2 1/2
= ( /0 (2n(0)Q(x))2dw> / ( /0 (n(z)—2n(0))2dw)

1/2
(/0 (1- 23ech2(\/§_c;/(2e)s))2 ds)

IAdf? <

_ 4c3
~ (5 -
(62 el )> (fol/z'(zsechw’%/(zie)) — sech(v220/(2€)9)) ds)

02
< ——.
= e2exp (2De)

Here we have used the fact that sech(y/2co/(2€)s)) is a monotone decreasing function of
s and the assumption v = v/2¢o/(2¢) > 4 which ensures that

1/2 1/2
(/ (1 — 2sech? (vs))? ds) < e (/ (1 — 2sech? (v/2)sech(ys))? ds) .
0 0

Unlike the case of nonhomogeneous Dirichlet boundary conditions considered in by
Kreiss, for nonhomogeneous Neumann conditions the resulting linearization about the equi-
librium is not exponentially stable for all . In this case it is difficult to establish this
analytically, so we only present the numerical results obtained for the first three eigenvalues
computed for a range of values of (ie., co for fixed € = .1). For one value of ¢y we have
plotted the corresponding normalized eigenfunctions. Note that when co = 0 the problem
(5.77), (5.78) reduces to

" =X, ¢0)=0, ¢(1/2)=0

with eigenvalues given explicitly by A; = —(2j — 1)2n2 for j = 1,2,--- and with associated
eigenfunctions @;(z) = V2cos((2j — 1)mz) for j=1,2,---.

Thus, for small 7 the problem has all stable eigenvalues. However, we show that as y
increases the first eigenvalue A;, as a function of v, becomes positive, stays positive and

decreases to zero as 7 tends to infinity.

V2¢o and varied ¢y from cp = 0 to cg = 18 so that v

We have ﬁxed € = ,1, set v =

€
varies from v = 0 to v = 20. The eigenfunctions are depicted in Figure 20 with vy = 16 (or
co = 5.12) while Figure 21 contains the plot of  versus A; for j = 1,2.
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FIG. 20. Eigenfunctions with with y = 16 (or ¢p = 5.12)
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FIG. 21. Plot of Eigenvalues v versus A; for j = 1,2

The main thing we learn from this exercise is that the linearization is not exponentially
stable for large values of ¢o and so the corresponding stationary solutions are not stable for
the Burgers’ system with nonhomogeneous Neumann boundary conditions. Nevertheless for
a fixed floating point accuracy, as we have seen, the numerical solution to Burgers’ equation,
for certain anti-symmetric initial data, converge to the solution of this problem for some cp.

5.2.10 Conclusions

In this paper we have shown that problem sensitivity and finite precision arithmetic can
combine to produce false numerical solutions to steady state problems. Although one might
guess that it is possible to construct pathological examples with this property, it is somewhat
remarkable that this phenomenon can occur for a “simple” Burgers’ equation. In addition,
in the space of antisymmetric L? functions L%4(0,1), we have shown that the steady state
Burgers’ equation has a unique solution (v(z) = 0), and:yet, discretized versions of this
equation can yield non-unique solutions. More importantly, for sufficiently large initial data,
marching schemes will converge to this discrete (yet false) solution. We also presented a
sensitivity and stability analysis that provides insight into these numerical difficulties.
One implication of these results is that more analysis needs to be done on recent “nu-
merical based proofs” of nonuniqueness. In particular, we have established that in a per-
fectly reasonable model, numerical computations that yield nonunique discrete stationary
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solutions do not imply anything about nonuniqueness for the continuous boundary value
problem. It is important to again emphasize that it is finite precision arithmetic that causes
these false solutions. Therefore, even converging an algorithm to machine roundoff error
will not eliminate the difficulty.

Finally, we observe that the false numerical solutions can differ by orders of magnitude
from real stationary solutions. Therefore, in such cases, cascading the numerical solutions
into an optimization or control algorithm can produce bad designs. More about this issue
will appear in future papers.

6 Report on the Cornell Subcontract

Partnership for Research Excellence and Transition (PRET) Contract
“Sensitivity and Adjoint Methods for Design of Aerospace Systems”
Virginia Polytechnic Institute and State University
Contract Number CR-19024-430662

FINAL REPORT
Cornell University
Contract Number 30049

Gahl Berkooz, Hal Carlson, John Lumley, Robert Miller
M&AE, Cornell University, Ithaca, NY 14853

6.1 Background and Objectives

The Partnership for Research Excellence and Transition (PRET) set as its goal to produce
outstanding research and to work with industrial partners and Air Force partners to see that
the research gets transitioned. Because of the nature of this project, the personnel working
on it worked closely with the industrial partners. The strategy for assuring the success
of the transition is that each postdoc was assigned as a “lead postdoc” for one industrial
partner. It’s the postdoc’s job to assure that communication and research transition takes
place.

Our proposal stated that we would use PDESolve as a generic tool for software devel-
opment. BEAM was generous to provide PDESolve at no cost for use by PRET members.

The goal of the BEAM — Cornell transitions was to produce PDESolve modules for use
by the PRET team and for applications to aerodynamic design and materials processing.

6.2 Research Achievements

This section contains a summary of the work preformed at Cornell.
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6.2.1 High Level 3D Navier-Stokes Solver

We developed a 3D Navier Stokes solver using a Galerkin Least-Squares to circumvent
the usual (LBB) div-stability restrictions on element pairs. A finite element mesh for
this problem was created by post-processing a model generated in ProEngineer (a popular
engineering 3D CAD package). A number of computational experiments for two dimensional
flows were compared to published CFD solutions to verify the results of this software. , and
implemented it in PDESolve.

Because of high level symbolic expression specifications of PDESolve the entire code

_was less than 200 lines long. This is very impressive because a similar code written using

traditional techniques such as FORTRAN would have taken three years or more to write
and would have consisted of tens of thousands of lines of code.

This effort pointed out a deficiency in certain aspects of PDESolve. Specifically, from
this effort BEAM learned that the finite element engine underlying PDESolve needs to
be significantly enhanced, perhaps even re-written if it is to support state-of-the-art DoD
needs. This lesson was very valuable to BEAM.

This effort was also valuable in communicating to PRET members and potential DoD
users and partners the power of mixed symbolic- numeric computing in general and PDE-
Solve in particular.

As part of the Navier Stokes project, an evaluation of what geometric sensitivity in-
formation would need to be provided as boundary conditions for geometric sensitivity flow
equations was done as well. This information was incorporated in the design of a 2D para-
metric geometry engine that provides sensitivity information as well as interfaces to 3D
commercial geometry packages.

6.2.2 2D Shape Optimization and Optimization Architecture

BEAM Technologies developed a parametric 2D geometry engine that provides the informa-
tion required for boundary conditions for geometry sensitivity partial differential equations.
We applied this software to shape optimization model problems. The results were excellent;
we were able to implement sensitivity and optimization very efficiently. We transitioned the
lessons we learned to BEAM in the form of reccomendations for how to improve PDESolve
in the areas of optimization.

Because computing cost function gradients is the key to any optimization algorithm,
we developed an adaptive finite element strategy for computing cost function gradients ef-
ficiently and accurately. Using the continuous sensitivity equation, we were able to develop
error estimates for sensitivity variables (derivatives of flow variables with respect to param-
eters) in addition to error estimates for the flow. Adaptive mesh refinement was performed
to reduce both sets of errors. Thus, we were able to compute very accurate gradient calcu-
lations using fixed computing resources, or conversely, computationally efficient algorithms
to obtain a desired level of gradient accuracy.

At the time of the research project, there were significant discussions in the community
regarding the merits of the analytic sensitivities compared to automatic differentiation. Au-
tomatic differentiation has the advantage of being applicable to existing complex scientific
and engineering codes, whereas analytic sensitivities offer improved speed (both targeted
at computing cost function gradients.) To bridge this divide we developed a method for
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Computation of continuous sensitivity equations by applying standard automatic differenti-
ation software to (slightly) modified PDE solvers were demonstrated. Using this technique,
we were able to use AD to compute derivatives of PDE solutions with respect to shape
parameters without the need to compute derivatives of discretization parameters (such as
the mesh, adaptive time stepping algorithm, etc.).

6.2.3 Sensor and Actuator Optimization in Flexible Structure Vibration Con-
trol

An area of importance to the Air Force and NASA at the time was the optimization of
the location of sensors and actuators for smart structure control. In this application piezo-
electric sensors and actuators are placed on a structure and a control algorithm is used to
dampen the vibrations. This allows the reduction of the weight of a sattelite, for example.
Using PDESolve we developed innovative technology to help address this question. This
technology was transitioned to BEAM. Research included algorithms for modeling beams,
plates, box beams, and three-dimensional elastic structures with distributed SMEC’s (Smart
Materials Embedded Components) for controlling vibration and stress. Piezoelectric actu-
ators are modeled as three-dimensional, homogeneous bodies using the quasi-static linear
theory of electroelasticity. Governing equations for the substrate structures and embedded
components are expressed in finite-element formulations. The software employs model or-
der reduction and has direct interfaces with control design software like Matlab and CAD
software like ProEngineer. See attached report.

6.2.4 Materials Processing Applications of Relevance to the Air Force

Since one of the objectives of the Cornell - BEAM collaboration was to develop modules
in the area of materials processing, an effort was put into identifying materials processing
applications that may be of interest to BEAM on the one hand and are relevant to the Air
Force on the other hand. Two applications were identified: _
Injection molding of viscoelastic and viscoplastic materials As a result of collabora-
tion with Allied Signal we learned that Allied Signal has developed a certain ceramic slurry
that they were interested in injection-molding into shapes that would eventually become
turbine blades after a baking process. Ceramic blades was an area DARPA made heavy in-
vestments in, and Allied Signal was one of the beneficiaries of these funds. However, despite
the success in the development of the basic materials, Allied Signal had a problem with the
manufacturing process. Specifically, optimization of the location of the material injection
point was an issue. A collaborative effort was put in place to try and solve a generic 3D
injection molding problem, followed by models with more complex material physics. This
effort did not yield conclusive results, as PDESolve had difficulties in converging some of
the problems. '
Chemical Vapor Infiltration in the Manufacturing of Carbon-Carbon Compos-
ites

Carbon-Carbon composites is a technology the Air Force has made significant invest-
ments in. One of the problems with this technology is that setting manufacturing parameters
is a trial and error process. The process is very expensive because each manufacturing run
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may take up to a week of “baking.” The objective of this work was to develop a capabil-
ity to optimize the process. The first step was to set up a simulation of the process. This
project was a great success - the symbolic nature of PDESolve enabled solving fully implicit
chemistry using a species-sensitivity matrix. All the simulations were in 2D. This project
again proved the power of a mixed symbolic-numeric approach. This was a collaborative
effort with BEAM.

6.2.5 Fluid Structure Interaction

A new method for predicting dynamic effects of fluid-structure interaction was developed
by BEAM, for the purpose of optimizing designs to minimize flutter, and enable the control
of flutter with sensors and actuators. BEAM made several extensions to PDESolve, as well
as a PDESolve code generator using Mathematica. These were provided to Cornell at no
cost for the purpose of researching BEAM’s new method and providing feedback to BEAM.
The new method holds great promise, and is currently the only known approach that can
account for viscous effects on flutter and limit cycle oscillations using CFD-quality fluid
dynamics data. The results of this research are summarized in the papers by Miller.

6.2.6 Control and fluid Structure interaction

In work related to both flexible structure vibration control and to fluid structure interaction
(see sections 6.2.3, 6.2.5) we examined the structure of the turbulent boundary layer with
an eye to its control and modification over flexible structures. As a first step, we considered
a compliant surface. Specifically, we followed an approach in which only the large scales
of the boundary layer are resolved, the smaller scales being parameterized. In this way, a
low-dimensional model of the layer is developed, which can be investigated dynamically as
it interacts with various structures. The general approach is described in the papers below.

More general contributions are contained in the papers by Lumley and his co-workers.
In particular, the book by Lumley describes the application of some of these same ideas
to flow in engine cylinders. A tumbling flow leads to elliptic instability which promotes
high turbulence, increasing flame speed and reducing pollution. Our approach permits the
examination of this dynamical process and its manipulation to optimize these effects.

The second book by Lumley is a report on current interesting research directions in fluid
dynamics prepared under the auspices of the U. S. National Committee on Theoretical and
Applied Mechanics. This was intended for members of Congress and their staffs.
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7 Honors

e Professor John Burns was named Hatcher Professor,
e Professor John Burns was elected Fellow of the IEEE,

e Professor Jeff Borggaard was named a PECASE Fellow,

8 Personnel Supported

The following people were supported in part under Grant F49620-96-1-0329:

Senior Investigators Postdoctoral Fellows Graduate Students

Gahl Berkooz Hal Carlson Jeanne Atwell
Jeff Borggaard Robert Miller Chris Camphouse
John Burns Oliver Stein Kevin Hulsing
Eugene Cliff Paul Gilmore Alejandro Limache
Matthias Heinkenschloss Diana Rubio ~ Graciela Cerezo
Bernard Grossman Chris Camphouse Vinh Nguyen
Terry Herdman Jeff Borggaard Rajiv Sampath
Belinda King Stefanie Feih
Yuying Li Sandra Ham
John Lumley Shana Olds
Dominique Pelletier Ajit Shenoy
Ekkehard Sachs - Lisa Stanley
Nick Zabaras Joseph Mugtussidis
Mary Gallo
Dawn Stewart
Lyle Smith
Ken Massa
Eric Vugrin
Denise Krueger
Katie Camp

o Interactions/Transitions

Our efforts to expedite the transition of our research to industrial and Air Force needs are
manifested by direct industrial/laboratory interactions and participation at professional
meetings. One of the major components of this effort was active cooperation and coordina-
tion with the Air Force Research Laboratory (AFRL) and with our industrial partners. We
have actively worked with all of our industrial partners and with groups at AFRL/VACA
and AFRL/DE. :
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Industry/Laboratory Interactions

Aerosoft Inc.

We worked closely with AeroSoft on several projects to develop software packages for anal-
ysis and design of aerospace systems. The central theme in these efforts is the continu-
ous sensitivity equation method (SEM) for approximating the effect of parametric design
changes on aerodynamic performance. As of this writing the production code SENSE is
at Version 1.0.4. Recent additions permit sensitivity calculations in turbulent flows with
one and two-equation turbulence models. We continue to support AeroSoft’s work with
AFRL/DE on design and analysis for COIL lasers. As noted above, we are studying formu-
lations to efficiently couple single discipline sensitivity codes for the study of multi-physics
problems. This work is being supported by AFRL/DE and is described below. -

Boeing Defense and Space Group (BDSG)

Recent efforts with our Boeing partners are focused on transition of our recent work on
CFD/Sensitivity methods for estimating rotary aerodynamic derivatives. Dr. A.C. Li-
mache has completed his Ph.D. studies in this area and research is being transitioned to
Boeing. Our initial objective is to implement required changes in a 3D Euler code to pro-
vide a capability to estimate aerodynamic forces and moments in a generalized steady flight
maneuver.

Directed Energy Directorate of AFRL

Dr. T. J. Madden and others at (AFRL/DELC) are involved in efforts to develop technolo-
gies for improved performance in chemical oxygen-iodine lasers (COIL). Gaseous chemical
lasers can provide lightweight, efficient energy sources for a wide variety of Air Force systems
including airborne and space-based directed energy weapons. Computer-based design tools
can lead to rapid development of efficient laser-power systems. In addition to the coupled
sensitivity analyses noted above, we are developing an alternative formulation, based on a
paraxial wave equation, for modeling energy extraction in the laser cavity. This replaces
a “discrete” ray-tracing algorithm currently in use at AFRL/DELC and is a more natural
setting for continuous sensitivity analysis.

Air Vehicles Directorate of AFRL

Dr. Siva Banda and others at AFRL/VACA are starting a new effort to develop control
technologies for application to flow control. We are working with Dr. Banda’s group on
flow control and computational tools for design of distributed parameter systems. We plan
to extend earlier work on functional gain computations to a practical experimental test.
Dr. Burns will be spending time at AFRL/VACA to help initiate this project.

10 Publications Produced Under the Grant

Books

1. Computational Methods for Optimal Design and Control, Edited by Jeff Borggaard,
John Burns, Eugene Cliff and Scott Schreck, Progress in Systems and Control Theory,
Birkhauser. Boston, 1998, 475 pages.
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